阀控非对称缸电液系统的模型跟随自适应控制
提出一种将微分变换和模型跟随自适应控制相结合,实现对阀控非对称缸的非线性电液系统的动态反馈线性化方法,且所构成的系统的模型完全跟随条件能自动满足,给出了仿真结果。
基于Backstepping的阀控非对称缸电液伺服系统非线性控制
考虑了阀控非对称缸电液伺服系统的控制问题.首先给出了系统的动态模型,然后基于Backstepping方法得到了系统的非线性控制器.这种方法可以扩展到液压驱动机器人控制的设计上.最后对所提出的非线性控制策略与常规的PD控制方案进行了比较,仿真结果表明所提出的非线性控制策略具有更高的控制精度.
兆瓦级风力发电机变桨距液压控制系统的设计和建模仿真
针对兆瓦级水平轴变桨距风力发电机的控制要求,设计了变桨距液压控制系统.运用传递函数法结合阀控非对称缸理论建立了变桨距液压系统的数学模型,利用Simulink仿真软件对其进行了动态仿真,根据仿真结果验证了其模型的合理性和正确性.通过建模仿真试验为MW级大型风力发电机变桨距国产化提供了一定的理论数据.
带补偿因子的双模糊控制在电液伺服阀控非对称缸系统上的应用研究
为解决电液伺服阀控非对称缸系统在进行对称运动时由于液压缸的非对称性带来的控制非对称问题,提出一种含补偿因子的双模糊控制算法。以电液伺服阀控非对称缸系统为对象,针对非对称液压缸在两个运动方向上动态特性的非对称性问题,采用含补偿因子的模糊控制器进行补偿。同时,针对负载力大范围变化的特点,采用模糊PID控制算法来适应负载的变化。模糊PID控制器及含补偿因子的模糊控制器以经过跟踪微分器处理的误差及误差的微分作为输入,模糊PID控制器输出为PID控制器各项系数,含补偿因子的模糊控制器输出为补偿因子,结合模糊PID控制器,形成有效解决非对称液压缸非对称性问题的控制方法。仿真和试验结果表明,提出的控制方法能够有效解决电液伺服阀控非对称缸系统的控制非对称性问题,并拥有良好的控制效果。
基于ADAMS的阀控非对称缸仿真研究
文章基于ADAMS建立了阀控非对称缸的实体模型和液压系统对其速比特性进行了分析并得出仿真结果;进一步对阀控非对称缸进行非线性建模利用ADAMS与MATLAB对系统进行仿真得到阀控非对称缸系统的动态及静态参数值.详细介绍了ADAMS与MATLAB联合仿真的建模过程及实现方法.
对称阀控非对称液压缸的电液比例位置控制系统建模与分析
介绍了电液比例位置控制系统,建立了对称阀控制非对称液压缸位置控制系统的数学模型,用Matlab对系统进行了仿真实验,并且分析了对称阀控非对称液压缸的电液比例位置控制系统的静态特性和动态特性,在此基础上进行了实验研究,实验结果与仿真结果基本一致,证明本研究所建立的数学模型基本正确.
集成式风机风量调整伺服液压缸控制性能的分析
设计一种采用机液伺服阀控液压缸的新型集成式引风机,优化伺服液压缸活塞阻尼孔通径和伺服阀口面积梯度等主要参数,并分析其对系统的快速性、准确性、稳定性和动态刚度的影响。建立了三通阀控差动缸数学模型,对系统进行了仿真研究。研究结果为引风机风量调节伺服机构的实验测试和最终产品的定型提供理论基础。
基于流量近似的阀控液压缸动力机构建模
由于非对称缸两腔的非对称性,采用与对称缸类似的方法建立其工作点线性模型时,需要对两腔压力微分做更多的近似处理,模型误差较大。在液压缸负载流量线性方程推导过程中,提出采用对两腔流量进行近似处理的方法,得到适用于不同活塞位置的阀控非对称缸统一模型;应用于对称缸,所得结果与采用传统方法得到的相同,表明所得非对称缸模型误差较小。将零位附近负重叠区内伺服阀中液压油通流状态看作液压缸正反向运行时的两种通流流态共存,得出零位附近的流量增益和流量-压力系数计算公式。不同活塞位置、不同阀芯位移等多个工作点仿真测取的模型参数与理论计算结果相差很小,不同工作点的闭环控制试验曲线与基于理论计算模型的仿真曲线一致,表明所得阀控缸模型误差小。
反馈通道含有间隙对电液位置伺服系统特性的影响研究
针对电液位置伺服系统反馈传感器处存在较大间隙时引起系统振荡加剧甚至不稳定的问题根据位置反馈传感器同步测量缸的低阻尼特性建立了反馈通道含有迟滞间隙特征的电液位置伺服系统的数学模型针对一个电液位置伺服系统工程实例利用Matlab软件对反馈通道含不同尺寸间隙的情况进行了仿真研究结果表明:当间隙从小到大变化时系统单位阶跃响应调节时间明显加长超调量也逐渐增大当间隙值增大至0.08mm时出现极限环振荡系统不能稳定工作。
伺服阀控非对称缸的压力跃变分析与仿真
本文首先对液压伺服阀控非对称缸系统进行数学建模,分析计算了伺服阀控非对称缸在换向时产生的压力跃变,用AMESim仿真软件对系统进行了仿真,得出压力跃变曲线。最后设计了差动控制回路来解决阀控非对称缸的压力跃变问题。