无轨胶轮车液压制动系统仿真分析
为验证设计的某型号无轨胶轮车湿式液压制动系统合理性和可靠性,论文分析了无轨胶轮车的行车制动、驻车制动过程,利用液压仿真软件AMESim对系统进行建模仿真,进一步研究分析,得出所设计的液压制动系统能够满足设计要求,这对无轨胶轮车液压系统设计具有一定的指导意义。
全液压制动系统继动阀动态特性研究
为验证继动阀的可靠性(输出压力12.0 MPa,响应时间0.2 s),并研究继动阀动态特性对全液压制动系统制动性能的影响,以某型号越野车开发的全液压制动系统为研究对象,建立了继动阀理论分析模型,运用AMESim软件建立了全液压制动系统仿真模型,分析了阀芯摩擦力、节流口的初始遮盖量、复位弹簧初始压缩量和弹簧刚度对制动性能的影响,并通过实验验证了仿真模型的准确性.研究结果表明:继动阀应用于液压制动系统可以满足制动要求(输出压力12.0 MPa,响应时间0.2 s);阀芯摩擦力过大会使继动阀的开启压力增大,导致继动阀的比例滞环增大,影响阀芯的复位性能;继动阀节流口的初始遮盖量越大,打开节流口克服的摩擦力越大,制动系统的响应时间越长;通过调节继动阀复位弹簧初始压缩量和弹簧刚度可实现制动压力的微调节.理论模型和仿真模型为全液压制动系统的进...
8×8全电驱动越野车电机液压联合全液压制动系统设计及性能
为验证8×8全电驱动越野车电机液压(简称电液)联合全液压制动系统的可靠性,依据新一代轮式机动平台独立电驱动车辆制动系统性能指标要求,以某型号8×8全电驱动越野车为研究对象,对新一代电液联合全液压制动系统进行了原理方案设计;考虑系统的长管路特性对输出制动性能的影响,搭建了与整车元件、管路布置1∶1的实验平台,分析了不同工况下全液压制动系统的输出特性。结果表明:新一代电液联合全液压制动系统的输出制动力、制动响应时间等满足整车制动力12.0 MPa、响应时间0.2~0.3 s的制动性能指标要求;制动输出压力与制动踏板的位移及变化率呈线性关系;当电控系统发生故障时,依靠全液压制动系统仍然能满足整车的制动需求。
飞机牵引车制动系统设计与试验研究
无杆飞机牵引车利用夹持举升装置将飞机前轮抱起,依靠自身和飞机前轮部分的重力来承担地面的附着力,牵引车在工作过程中质量大、惯性大,为维持自身和飞机的操纵性和稳定性,对其制动系统响应要求高。文中采用液压制动的方式对飞机牵引车的制动性能进行研究,以液压泵和蓄能器作为动力源,用充液阀稳定蓄能器压力,根据车辆技术指标,确定了液压系统的元器件和主要参数,设计了用多片式的一体化的制动执行机构,最后基于对实车进行驻车驱动制动压力测试和高速制动试验。试验结果表明:该系统可以有效提供稳定的液压力,满足牵引车对制动力的需要。该制动系统的设计已成功应用于同类飞机牵引车,为以后飞机牵引车液压制动系统的设计和改进提供了参考依据。
集成式电液制动系统耐久测试系统的研究与设计
集成式电液制动系统研发成功后需对其进行耐久性能测试,针对这一问题,基于CAN通信设计了一套集成式电液制动系统的四工位高低温耐久测试设备。加载机构用于模拟实车踩踏板过程,由小位移高速度的伺服直线电缸进行驱动;管路系统通过真空和正压等多重注油方式可以充分排出管路内部气泡,确保测试数据的可靠性;负载机构根据需求可以通过手动球阀在实车卡钳负载和钢瓶负载之间切换;数据采集与控制系统基于数据采集卡和工控机设计,可对电磁阀进行控制和监控以及传感器数据的实时采集,通过CAN通信向被测产品电子控制单元(ECU)发送对应的控制报文,可驱动产品进行常规制动和防抱死制动系统(ABS)等工况运行。多次测试结果表明,该耐久测试系统稳定可靠,各个工况测试时能快速按照控制报文进行升降压,液压曲线良好,满足汽车厂商对集成式电液制动...
基于模糊故障树的采煤机液压制动系统可靠性分析与计算
将模糊关系法与故障树分析相结合,先利用专家评判法建立影响因子隶属度关系矩阵,再模糊量化不同矿区的工况条件,与关系矩阵运算得到一个乘因子,故障树底事件平均故障率与该乘因子之积即为当前工况下的故障率,最后代入故障树定量计算出顶事件发生概率。
简谈矿井提升机液压制动系统改造
随着我国煤矿行业的快速发展,能源需求量逐渐增加,矿山设备自动化技术水平不断提高,煤矿安全问题得以有效改善。矿机提升机是实现煤矿安全生产的重要环节。提升机在实际减速制动过程中,可以对自动盘进行控制,从而保证安全停车。同时,通过提供出动力矩实现提升机有效减速。在矿井遭遇突发情况或安全事故时,可以启动安全阀保证提升机的稳定运作。因此,为进一步保证提升机平稳制动,降低冲击所造成的不良影响,本文主要内容是分析与研究矿井提升机液压制动系统改造措施,以期为实现煤矿安全生产提供参考与借鉴。
矿用多功能铲运机全液压制动系统设计
介绍了矿用多功能铲运机的制动形式,阐述了定量泵与变量泵全液压制动系统的构成,对比分析了定量泵、恒压泵与负载敏感变量泵全液压制动系统的特点。分析了负载敏感充液阀与反向调节制动阀的结构与工作原理,综合整机布置以及制动、转向与工作机构液压系统的设计因素,完成了矿用铲运机全液压制动系统的设计,实现了整机行车制动、紧急制动与驻车制动功能,为配置发动机动力系统和采用液力机械传动设备的全液压制动系统设计提供了参考。
矿井提升机液压制动系统数学模型研究
本文以铁矿矿井提升机液压制动系统为例,首先分析了提升机液压制动系统的组成,其次分析了提升机液压制动系统数学模型,最后分析了提升机液压制动系统的特性,保证矿井提升机安全稳定运行。
矿井提升机制动液压系统的设计及特性研究
制动液压系统作为矿井提升机制动系统的控制单元,参与提升机的正常开闸、工作制动、安全制动等关键动作。基于此,针对矿井提升机的问题,通过分析矿井提升机的换绳技术,对换绳装置和液压制动装置进行具体研究。通过实际应用表明,换绳工作从开始到结束仅仅用了5 h,减少了换绳工作的时间;液压制动装置的安装,提升机速度从3.5 m/s降为0,所需时间为6 s,减速度为0.6 m/s^(2),降低了提升机制动成本,保证了提升机运行的稳定性和安全性,为矿井安全开采提供了必要保障。