傍山地区的强风场特性实测研究
介绍了某傍山地区的强风现场测量研究.采用较高频响的风速风向计与实时数据检测处理系统测得了该地区的风特性,并对一次冬季强风记录进行了分析研究,给出了反映强风脉动特性的两个重要参数-湍流度和阵风系数的关系,指出脉动风速的概率分布直接影响了二者比值大小.此外,通过实测结果与邻近气象站的同期记录比较,发现二者的相关性很差,在整个强风过程中,该地区的最大瞬时风速和平均风速都远远高于气象站的记录,表明傍山地区局部风场有很大的特殊性.
地下原型坑道中油气爆炸的实验研究
在截面积为7.2m2,长为700m的地下原型坑道中进行了油气混合物的爆炸实验,实验中使用了加速油料挥发气化的雾化装置以及远距信号传输和采集系统.通过光电火焰传感器和压阻传感器测试爆炸过程中火焰和压力信号,得到了地下原型坑道中油气爆炸过程的基本参数,揭示了爆炸过程中组分、湍流对燃烧与压力波发展影响的规律.
沟槽面对湍流边界层流动特征影响的实验研究
利用二维激光多普勒测速仪对零压力梯度下光滑面和小尺度沟槽面的沟槽及峰上部区域中湍流边界层流场进行了对比测量.笔者着重考察了在相同流动条件下两位置的平均速度、流向速度脉动强度、高阶矩以及雷诺剪应力的分布特性.实验中发现:沟槽能够增加粘性底层的厚度,减小壁面剪切力,有减阻效应.而此处的流向速度脉动的强度、高阶矩以及雷诺剪应力在距离壁面的不同区域中均有减小或降低,说明沟槽具有削弱湍流湍动的功能;而峰上部的湍流统计平均量则表现出与槽相反的结果或趋势.还讨论了该沟槽面减阻的原因.
关于风洞中用尖劈和粗糙元模拟大气边界层的讨论
尖劈和粗糙元广泛地应用于风洞试验中的大气边界层模拟,该技术成功模拟了不同地貌特征的平均风速和湍流度剖面.随着风工程研究的深入,了解尖劈和粗糙元模拟过程中的作用机理有助于准确地模拟各种大气边界层湍流功率谱和尺度特性.试验表明:尖劈利用其迎风平板的分离流产生湍流涡旋,迎风板的宽度决定了涡旋的大小和湍流脉动强度,同时迎风板阻塞比沿高度递减产生近似线性的风速剖面;粗糙元用于模拟实际地面的摩擦效应,调整平均风速和湍流度的剖面分布.遗憾的是,尖劈下宽上窄的结构特点决定了该技术模拟的湍流功率谱和积分尺度的高度变化律与实际大气边界层相反.基于对模拟机理的认识,异型尖劈上部形状有助于模拟大比例模型试验要求的湍流风场.
剪切水气界面下湍流特性的实验测量
通过实验研究了受气流剪切但无明显波动的水气界面下的湍流特性.当界面剪切较强(uτ≥0.20cm/s)时,水面边界层中平均流速、速度脉动强度和Reynolds切应力的分布形状与固壁湍流相似,预示剪切水气界面和固壁附近的湍流相干结构是相类似的.另一方面,水面湍流也表现出不同于固壁湍流的细节特征.与自由面湍流不同的是,在靠近剪切水气界面的流场中流向和垂向速度脉动同时受到抑制.
高层建筑平均风压的阻塞效应试验研究
基于5组不同缩尺比的矩形高层建筑风洞试验模型,在两种不同湍流度强度风场下研究湍流度对高层建筑平均风压的阻塞效应影响。试验结果表明:同种风场下,阻塞效应对模型迎风面平均风压系数的影响较小,阻塞比的不同并没有引起迎风面压力分布的显著变化,阻塞比的增大使模型侧面和背风面平均风压系数降低较为显著。来流湍流增大会降低阻塞效应对平均风压系数的影响,湍流度增大对迎风面阻塞效应影响较小,但对高层建筑模型侧面、背面阻塞效应影响较大;最后,对低湍流度风场下阻塞效应修正公式进行了检验,并验证了高湍流度风场下阻塞效应修正公式的适用性。
基于CFD静压气体轴承的仿真分析
利用CFD流体计算软件对气体静压轴承三维内部流场进行数值模拟与分析。在计算中采用了湍流(Realizable K-ε)计算模型,利用计算结果对气体静压轴承的性能进行分析,得出了承载力随着转速的增加而明显的变大;在节流孔附近湍流效果明显,远离节流孔流场逐渐恢复层流;同时通过对节流小孔附近的截面的压力和马赫数分析,得出了在节流孔附近存在着超音速现象,对轴承的稳定性有一定影响,并且通过节流孔附近的压力分布以及承载力与转速的关系,得出了转速对静压轴承的静特性影响不可忽略。
微尺度湍流风速液压风力发电短期储能特性研究
研究微尺度湍流风速对风力机输出功率的影响,在均速为额定风速的微尺度湍流风速作用下,分析蓄能器有效容积、单位质量储能和充电状态等主要参数与湍流部分的关系。并在此基础上,提出一种既能短期储能又能使发电机处于额定功率运行的液压风力发电系统。并就微尺度湍流强度为12%额定风速情况,对带有蓄能器短期储能的10 kw液压风力发电系统进行仿真研究,结果表明,带蓄能器短期储能的液压风力发电系统比没有蓄能器的液压风力发电系统输出能量提高11.3%。
液压集成块湍流模型修正及内流特性分析
基于粒子图像测速技术(PIV)建立了带有刀尖角容腔的直角转弯流道流场的数值计算模型,并进行三维流场仿真。通过将数值计算得到的典型涡系结构与实验结果进行对比,考察了工程上常用的7种湍流模型对带有刀尖角容腔直角转弯流场的预测性能。通过定义权重误差K,筛选出S-A模型作为基础湍流模型并对其进行了参数修正。结果表明,当S-A模型Cb1取值从默认值0.1355修正为0.17时,出流方向正对刀尖角容腔模型权重误差值上升25.0%,入流方向正对刀尖角容腔模型权重误差值下降34.7%,修正后的S-A湍流模型对两种直角转弯流场的综合预测精度有所提高。运用筛选修正后的S-A湍流模型分析了4种典型直角转弯流道的内流特性,结果表明圆弧过渡直角转弯流道相比于带有刀尖角容腔的转弯流道具有更小的压力损失。
尺度解析湍流模拟方法在液力传动流动数值模拟中的应用
尺度解析模拟(Scale-Resolving Simulation,SRS)是指在一定尺度范围内对流动控制方程进行解析求解,理论上比全模化的雷诺应力平均(RANS)方法更先进。采用大涡模拟(Large Eddy Simulation,LES)中各种亚格子模型(Sub-grid Scale,SGS)和混合模型 Hybrid RANS/LES对液力元件包括:液力偶合器、液力变矩器和液力缓速器的内部流动进行了瞬态模拟。对比模拟结果与试验数据发现,SRS方法能够提高对液力元件外特性的预测精度,通过对复杂的瞬态流动现象的清晰捕捉,深入展示了描述流动机理的能力。SRS模拟表现出了工业应用的潜力。