脉动流场中介入机器人抗冲击性能研究与结构优化
基于腹足动物运动原理,提出一种能在脉动流场中稳定可靠运行的介入机器人。考虑到流场及在其中运动的介入机器人会发生相互影响,笔者在数值分析流场对机器人冲击力的基础上,对机器人外形结构进行优化,并对流体冲击下稳定运行时所需的机器人与管腔间的切向阻力进行定量分析。为分析通过磁流变液固化后机体与管壁间由于啮合产生的最大切向阻力是否足够抵抗流体的冲击,建立生物管腔内壁表面特性模型,实验研究机器人与管壁间间切向运动阻力影响因素。
滚子链传动振动特性的研究
提出了滚子链传动的横向振动新模型。
各向异性材料应力应变分析方法的研究
由于各向异性材料的弹性常数随方向而变化 ,这就使通常用于各向同性材料的光弹性贴片法的基本方程失效。本文从光弹性贴片法的基本原理出发 ,给出正交各向异性板内任一点的应力计算公式 ,同时也提出了正交各向异性板厚度效应的修正系数。文中对带圆孔正交各向异性板孔边应力分布做了光贴片实验并与文献 [2 ]中的有关数值解进行了比较 。
齿轮传动中啮合冲击的理论分析
根据渐开线齿轮传动的特点 ,应用机械动力学理论 ,建立了考虑轮齿受载变形后齿轮传动过程中的有关几何量与其啮入冲击速度、最大冲击力之间的定量关系表达式。据此初步分析了齿宽、传动比、轮齿受载变形、工况、齿轮结构等对传动过程中啮合冲击的影响情况。
摆线针轮啮合传动的等效接触扭转刚度计算
基于Hertz接触理论,建立了摆线针轮啮合传动单齿对法向接触刚度模型及等效接触扭转刚度模型。在此基础上,利用有限元方法计算了摆线针轮啮合传动中同时参与接触的针齿数,建立了摆线针轮啮合传动的等效接触扭转刚度模型,应用Matlab软件编制了等效接触扭转刚度计算程序。通过算例得出了3种修形组合下的等效接触扭转刚度变化曲线,讨论了3种修形组合下各曲线的变化特征以及等效接触扭转刚度曲线与摆线轮齿廓之间的关系。
大口径球面阀芯研磨新工艺与新机构设计研究
分析了大口径(1500 mm)球面阀芯整体式研具机械研磨的缺陷,不能满足球阀硬密封零泄漏而实现互换性,加工效率低;提出采用小片研具旋转研磨,并组成行星轮系研具片组,按一定速度、轨迹运动,来覆盖整个球面密封带的方法实现球面研磨;针对粗、精加工,提出采用球面上超声振动/脉冲电解加工/机械研磨复合加工,分析其加工机理得出能有效提高加工效率,提高尺寸精度,降低表面粗糙度数值;在空间结构布局上,设计出了满足3种加工条件的新机构;为高精度大球面的加工,提供了工艺方法及机构。
磁致伸缩轴向双柱塞泵驱动作动器特性研究
设计了一种磁致伸缩轴向双柱塞泵驱动的作动器,并提出了一种新型的主动配流阀,以双磁致伸缩泵为核心动力元件,组成电静液作动系统,实现了作动器的双向连续位移输出。通过建立作动器系统各部分的数学模型,从原理上分析作动器的输出特性。搭建实验平台测试并验证了作动器在相同转速不同相位角下的流量输出特性。通过数学模型与实验的对比,预测了在不同管路长度下作动器的输出特性变化规律。实验结果表明,在驱动频率180 Hz下,最大输出流量可达2.7 L/min。
电磁挤压的多盘式磁流变液传动性能研究
针对高转矩磁流变液装置结构复杂及使用场景受限等问题,提出了一种电磁挤压的多盘式磁流变液传动方法,利用励磁线圈通电后产生的电磁力对磁流变液进行挤压,使其在传递高转矩的同时,装置的结构更加简单紧凑。利用Maxwell和Abaqus对装置进行了磁场及结构场有限元分析,计算得到了不同输入电流下磁流变液的剪切屈服应力、电磁力以及各工作间隙内磁流变液所受挤压应力;分析了磁流变液在受到挤压强化后的剪切屈服应力,并计算得出装置所能传递的转矩。对比实验表明:利用电磁挤压,磁流变液的传动性能显著增强,在3 A输入电流、7 241.4 N电磁力时,相较于未挤压状态,装置传递转矩提升了约78.6%。
EHB用无刷直流电机齿槽转矩电流补偿控制策略研究
电子液压制动系统现已普遍使用无刷直流电机,但其齿槽转矩会影响电机伺服控制品质,进而阻碍EHB综合性能的提升。为此,开展EHB用无刷直流电机齿槽转矩的电流补偿控制策略研究。首先,通过解析分析和有限元方法获取齿槽转矩变化规律;其次,根据齿槽转矩与转子位置的映射关系,提出基于电机位置信号的转矩实时电流补偿控制策略;最后,搭建电机的控制模型和有限元模型,并进行联合仿真。研究结果表明:加入电流补偿控制策略后,电机转速和转矩波动明显降低,位置伺服精度得到提升,有效抑制了齿槽转矩对电机伺服控制品质的影响。
动力稳定装置耦合系统机械特性研究
针对动力稳定装置中液压油缸的工作压强及液阻系数对作业效果的影响等问题,对动力稳定装置的轮轨接触特性、液压油缸工作原理以及钢轨的受力特征等进行研究。在刚性钢轨动力稳定装置-轨道横向耦合系统键合图模型的基础上,提出一种基于Euler梁理论的柔性钢轨动力稳定装置-轨道横向耦合系统键合图模型。基于此模型进行轨枕振动特性分析,并将分析结果与实验结果对比分析,验证了模型的准确性。分析了夹钳油缸工作压强、液压油缸进出油口的液阻参数和轮轨接触角对轮轨间能量传递效率与作业效果的影响。通过分析得到:当轮轨间能量传递效率保持在95%以上,轮轨角度应保持在0~40°;在轮轨间隙消除时(即夹钳油缸工作压强为7 MPa时),轮轨间能量传递效率会从之前的30%激增到99%左右,提升了69%。