液力变矩器性能分析
应用计算流体动力学 (CFD)方法 ,采用非结构网格和稳态交互面技术模拟了液力变矩器三维内流场 ,并与试验相对照 ,验证了数值模拟的正确性 .分析了泵轮、涡轮进口面、中弦面、出口面的流场特征形态及中弦面的二次流动现象 ,计算了泵轮、涡轮进口面至出口面能量损失分布 ,分析了涡轮叶片动量矩的分配 .
液力变矩器反求设计与内流场数值计算
采用反求设计方法建立了液力变矩器三维模型.建立了液力变矩器涡轮内流场物理数学模型,利用Fluent软件进行了相应的数值计算.分析了涡轮流道内流体速度、压力及压力损失情况,阐述了流场形成机理,为液力变矩器优化设计提供了理论依据.
液力变矩器的内流场数值分析
液力变矩器作为自动变速器的液力传动元件在车辆上得到广泛应用,其性能对整车的动力性、经济性有着很大的影响,深入研究变矩器内部流场对于设计高性能变矩器有重要意义。利用流体分析软件STAR CD对W30 5型液力变矩器内部流场进行细致研究,计算出变矩器的外特性。计算结果与试验数据的对比表明。
液力变矩器泵轮流场数值分析
应用计算流体动力学 (CFD)方法 ,采用非结构网格和稳态交互面技术 ,模拟了液力变矩器三维内流场 ,并与试验相对照 ,验证了数值模拟的正确性。分析了泵轮进口、中弦面、出口面速度场和压力场 。
逆向工程技术在液力变矩器泵轮设计中的关键应用
采用硅胶灌注的方法获得泵轮叶片模型。利用反求设计建立了液力变矩器泵轮三维模型,并进行了相关的数值计算。
一种新型液力缓速器设计与仿真实验分析
传统液力缓速器价格昂贵,结构复杂且质量大。文章正向设计了一种新型液力缓速器,基于ICEMCFD、Fluent软件进行了网格划分和流体流道分块,并进行了台架搭建与试验,初步达到了预期的缓速制动结果。新型液力缓速器体积小、机械机构简单,便于安装加工制造,利用液力元器件进行相似放大设计可以拓展应用场合。
翼型化叶顶对微型喷水推进泵内流场的影响
不同叶顶形状有不同漩涡分布,导致叶顶涡量分布不同,影响喷水推进泵内部流动。为研究翼型化叶顶对微型喷水推进泵内流场的影响,采用ANSYSCFX对微型喷水推进泵进行数值计算。在其他参数不变的情况下,研究3种不同翼型化叶顶(尖峰型、均匀型及S型)对漩涡及内部流动的影响,并与原始叶顶进行对比分析。研究结果表明:翼型化叶顶改善了叶顶及叶片背面涡量,叶轮进水端处高压区域范围明显减小且出水端速度分布更均匀。3种翼型化方案内流场分布区别不大,均匀型叶顶的涡量范围最小;S型叶顶高压区范围最小,且出水端高速区域面积最小,轮毂到轮缘速度布局最均匀,流动稳定。
穿水冷却喷嘴内流场仿真分析
在分析穿水冷却喷嘴的结构及工作原理的基础上,通过前处理软件Gambit建立喷嘴内部流场的三维网格模型,确定了数值模拟的数学模型、计算条件和求解方法。利用CFD软件Fluent对该模型进行了数值仿真,获得了喷嘴内部流场的各参数数据。分析了流场的速度分布与压强分布,为喷嘴设计及优化提供了理论依据。获得了不同输入压强情况下的喷嘴性能数据,为水冷过程的热交换分析和实际生产提供了参考数据。
尺度解析湍流模拟方法在液力传动流动数值模拟中的应用
尺度解析模拟(Scale-Resolving Simulation,SRS)是指在一定尺度范围内对流动控制方程进行解析求解,理论上比全模化的雷诺应力平均(RANS)方法更先进。采用大涡模拟(Large Eddy Simulation,LES)中各种亚格子模型(Sub-grid Scale,SGS)和混合模型 Hybrid RANS/LES对液力元件包括:液力偶合器、液力变矩器和液力缓速器的内部流动进行了瞬态模拟。对比模拟结果与试验数据发现,SRS方法能够提高对液力元件外特性的预测精度,通过对复杂的瞬态流动现象的清晰捕捉,深入展示了描述流动机理的能力。SRS模拟表现出了工业应用的潜力。
基于CFD新型机油泵容积效率分析及实验研究
以新型汽车机油泵样机为研究对象采用CAD软件对转子式机油泵内流场进行几何建模对模型应用非结构化网格生成技术划分网格并进行有限元前处理。在采用k-ε湍流模型的基础上应用计算流体力学软件模拟稳定工况下机油泵进、出口部分的三维湍流流动得到了压力等高线云图、流量值、流线图等及机油泵容积效率与转速的关系曲线;对样机进行流量实验将数值模拟得到的机油泵容积效率和转速曲线与实验特性曲线进行比较得到模拟结果与实验结果基本吻合。结果证明:数值模拟能够准确地反应机油泵的量特性和特殊流动性能为机油泵的设计开发和优化改进提供了新的研究方法和技术支持。