基于气动附件的重型货车空气动力学减阻研究
为减小重型货车的气动阻力,以实现整车节能减排的目标,基于某平头重型货车气动减阻敏感区域,设计了10种独立的气动减阻附件,利用CFD仿真对气动附件的减阻机理和效果进行了研究。结果表明,10种气动附件皆有减阻效果,其中一种仿生学减阻附件,减阻效果明显,减阻率为15.0%,且要求的安装空间小。最后通过气动附件的优化组合,获得了一种最佳减阻方案,减阻率达27.4%。
标度律分析在汽车气动噪声中的应用
车辆高速行驶时,气动噪声是影响车内舒适性的重要噪声源,车身周围的非定常流动是产生气动噪声的重要因素。一方面非定常流动产生流体压力脉动直接作用到车身外表面,激励车窗玻璃等振动,并向车内辐射噪声;另一方面非定常流动本身产生气动噪声,声学压力透过车窗玻璃和车身钣金件向车内直接传递噪声。本文提出标度律概念,用于描述和区别车身周围流体压力与声学压力随车速的变化规律,并对风洞试验结果进行标度律分析。结果表明:在给定工况下,汽车气动噪声以偶极子声源为主,车内和远场声学压力的幅值与速度的3次方成正比,而频率与速度无关;前侧窗表面流体压力的幅值与速度的1.5次方成正比,频率与速度成正比。
汽车后视镜气动噪声优化研究
针对某车型外后视镜气动噪声问题,提出了一种基于车外流场计算的气动噪声快速优化方法,并进行了相应的试验验证。在非定常数值模拟中,采用分离涡模拟与计算气动声学相结合的方法,对后视镜侧窗表面气动噪声进行了分析。结果表明,优化后侧窗表面气动噪声源强度在各频段明显减弱,各监测点声压级降低。道路试验验证结果表明,优化后各频段车内噪声也明显改善,后视镜气动噪声问题消失。实车道路测试结果表明,基于外流场数值模拟的气动噪声优化方法可行、合理,外流场数值模拟可为造型初期车内气动噪声优化提供有效指导,降低车型开发成本与周期。
汽车底部复杂流场的主动和被动控制减阻方法研究
针对汽车底部复杂流场结构存在的问题及其对汽车燃油经济性的影响,以降低气动阻力为目标,采用计算流体动力学方法研究了侧风工况下汽车底部复杂流场的主动和被动控制减阻方法,设计了阻流板、侧裙、底部抽吸控制槽和尾部气流喷射控制槽4种减阻方案,分析了各方案对气动阻力的影响和减阻机理。研究结果表明,减阻效果与横摆角、阻流板高度、侧裙高度、底部控制槽抽吸速度和尾部控制槽气流喷射的速度与角度有关,4种减阻方案的气动阻力最大降幅分别为9.4%,10.4%,13.5%和4.7%。在实际使用过程中,宜根据汽车运行环境采用动态控制方法,以达到最优减阻效果。汽车模型风洞实验验证了本文中数值计算方法的准确性,研究结果可为汽车设计提供参考。
某MPV车型的尾翼气动优化研究
为优化某MPV车型的气动性能,基于风洞试验结合试验设计优化方法对其尾部的尾翼零件包括尾翼本体和侧面饰板进行多参数的优化。通过在风洞试验中的优化获得了该车型尾部的气动最优造型方案,相比原始造型方案,整车阻力降低约2.9%。之后对优化前后的造型方案进行了CFD仿真,对比了优化前后的压力分布和流场的差异,分析了整车阻力降低的原因。最后通过对比整车各区和零件上的阻力变化进一步验证了阻力降低的原因,为MPV车型的尾部气动开发提供了优化方向。
数值风洞仿真与开阔路面仿真的关联性研究
为研究计算域对气动阻力的影响,根据实车风洞的结构参数搭建了数值风洞模型,并以开源模型DrivAer为研究对象,开展了12种车辆形态的数值风洞仿真与开阔路面仿真的对比分析。结果表明:光滑车底时,两种仿真得到的阻力值相差较小,为6~12个点(counts);详细车底时,两种仿真得到的阻力值相差较大,为17~22个点(counts)。两种仿真得到的两种车辆形态之间气动阻力的变化趋势基本一致,但改变车底和气坝时,两种仿真得到的气动阻力变化量相差9~15个点(counts)。
动态密封状态下汽车风噪性能不确定性研究
本文中提出了一种动态密封状态下的车内风噪性能区间不确定性的分析和优化方法。首先,建立整车统计能量模型,将谱分解后的风噪载荷施加至模型上,完成车内风噪计算;接着,测试密封条在不同压缩状态下的传递损失,并根据车辆行驶过程中密封条压缩量变化计算密封条传递损失的上、下界,实现不确定变量的描述;最后,基于区间摄动理论分析车内风噪声压级的变化范围,并建立稳健优化模型,对风噪声压级的中心值和摄动半径进行优化。算例计算结果显示,本文提出的方法可在保证相关零部件质量基本不变的前提下,降低车内噪声水平及其波动幅度,明显提升系统的稳健性。
CTB结构中电池与车身密封设计研究
CTB(cell to body)电池车身一体化技术在提升续航里程、整车刚度和耐撞性等方面具有很大优势,已成为新能源汽车行业发展新方向,但要将电池上盖与车身地板二合为一,密封是限制CTB技术发展的最大难题之一,目前行业在CTB密封领域的研究还是空白。本文从CTB密封策略、密封结构设计、密封组件选型、失效后果分析和用户工况设计验证展开研究,首次提出攻克行业内CTB密封设计难题的解决方案,加速CTB技术普及应用,推动全球新能源汽车产业电动化转型。
柴油机气缸垫状态参数预测与结构优化研究
为提高某重型柴油机气缸垫的可靠性和疲劳寿命,基于其温度场、热机耦合应力场和变形情况等状态参数利用相关方法对气缸垫的工作参数进行了优化研究。利用正交实验方法分析了缸垫的气缸圆直径、上水孔圆直径、隔热带长度、缸垫厚度和螺栓预紧力等5个工作参数对上述3个状态参数的影响规律,并确定了影响最为显著的4个工作参数。利用所提出的混合神经网络模型建立了工作参数与状态参数的对应关系模型,结合所提出的改进灰狼算法计算确定了气缸垫的最优工作参数值。分析结果表明改进后气缸垫的温度应力和变形情况得到显著改善,证明了改进的有效性和算法的准确性。
曲轴偏置对活塞裙部混合润滑特性的影响
建立活塞裙部-缸套系统的混合润滑仿真模型,分析曲轴偏置对活塞动力学和裙部润滑性能的影响。活塞动力学模型中考虑了活塞环和连杆的影响,润滑模型以平均雷诺方程、粗糙表面微凸体接触模型和雷诺边界条件为基础,考虑了变形和润滑油剪切变薄效应对润滑性能的影响。分析曲轴偏置对活塞2阶运动和裙部润滑性能的影响,探索降低活塞摩擦损失的潜在技术方案。通过样件试制和试验,验证所提出技术方案的可行性。结果显示,曲轴正偏置是降低活塞裙部摩擦和整机油耗的一种有效措施。