利用投影变换的平面度误差评定
提出了一种利用投影变换的平面度误差评定方法。研究了用投影变换将平面度误差转化为直线度误差,简化了计算量的同时又能对平面度误差进行准确的评定。首先,用最小二乘法对原始测量点进行拟合得到最小二乘面作为评定基面,找出评定基面的最优法平面。然后,将原始测量点投影到最优法平面上。最后,在法平面上对投影后的点进行直线度误差的最小区域评定。用该方法对参考文献中的多组数据进行了验证分析,结果表明该方法不仅能够快速、准确的对平面度误差进行评定,而且结果比凸包法、改进遗传算法等更加优化,为平面度误差的评定提供了一种新思路。
三维空间圆度误差高精度评定算法与编程
在获得高精度基准平面的前提下,三维空间圆度误差评定的另一个关键问题,是如何利用被测圆在基准上的投影,把三维空间问题转化为二维平面问题,对投影点进行平面圆度误差评定。算法以特殊三角形的外角平分线为研究方向,逐步把同心圆的半径之差降下来,令圆度误差计算收敛于真值,算法具备“最小包容区域法”特征,过程与结果均符合“最小条件”原则。算例验证结果表明,经过高精度的基准平面拟合,与符合“最小条件”原则的平面圆度误差计算,所获得的终值为高精度的三维空间圆度误差值。
基于坐标变换的圆柱度误差评定算法
提出了一种基于坐标变换的圆柱度误差评定算法。在任意位置放置、直角坐标采样、各离散采样点之间不要求为等角度间隔情况下,建立了可同时实现圆柱度误差的最小区域法、最小外接圆柱法和最大内接圆柱法评定的坐标变换法评定模型。详细阐述了利用坐标变换求解圆柱度误差的原理和步骤,给出了数学计算公式及计算机程序流程图。试验结果表明,该算法可以有效、正确地评定圆柱度误差。
基准为空间直线的平行度误差高精度评定程序研发
基准为空间直线的平行度误差,是评定位置关系时必然要面对的基本问题,本着求取符合“最小区域”意义上的高精度误差值为目的,首先探索符合“最小区域”准则的基准直线算法,在此基础上引用高精度“直线度误差”(二维)算法,探索高精度“最小包容圆”的算法,从而求得以直线为基准的高精度平行度误差值。
形状误差评定中最小区域收敛条件几何判定方法探讨
本文提出了解决参数曲面,曲线形状误差性质判定问题的几何方法。计算机仿真计算验证了该方法的可行性。
圆柱度误差的网格搜索算法
提出了一种评定圆柱度误差的新算法——网格搜索算法。该算法不采用最优化及线性化方法,只需重复调用点至直线的距离公式和简单的的判断就可以得到符合定义的4种评定方法的圆柱度误差值。详细论述了该算法求解圆柱度误差的原理和步骤。仿真结果表明,网格搜索算法可以有效、正确地评定圆柱度误差。
逐次逼近法评定自由曲线的轮廓度误差
自由曲线的轮廓常用离散点来表示,而不是已知的数学方程,评定其轮廓度误差非常困难.采用三次样条函数拟合出被测物体的轮廓曲线,并建立了评定线轮廓度误差的精确数学模型,提出一种用逐次逼近思想来评定平面自由曲线的轮廓度误差的方法.该方法能自动实现被测轮廓与理论轮廓之间的位置调整,在得出形状误差的同时得到位置误差,而且是一种符合最小区域原则的评定方法.实验证明,该方法能精确的计算出自由曲线的轮廓度误差.
基于遗传算法的圆柱度误差评定方法
建立了圆柱度误差最小区域评定的目标函数,并利用遗传算法对目标函数进行寻优,所建立的目标函数基于圆柱度误差最小区域定义,可以评定空间任意位置圆柱度误差的最小区域解,对测点无特殊要求,通过计算验证,该函数利用改进的遗传算法可以精确搜索到理想轴线的矢量方向并计算出圆柱度误差最小区域解,且计算结果稳定,该算法还可以推广用于圆柱轴线为基准的其它形位误差评定。
球度误差的新算法及程序
"最小区域球"意义上的球度误差,是符合"最小条件原则"的球度误差评定标准.本文另辟途径,直接以降低同心球半径之差为目标,寻求球心的移动方向和移动步长,不断把半径之差减小,从而使球度误差的计算向"最小区域"收敛.
对数曲线轮廓度误差几何遍历搜索评定算法
结合平面曲线轮廓度误差评定的最小条件原则及对数曲线的几何特性,提出了基于几何遍历搜索的对数曲线轮廓度误差评定算法。首先,采用最小二乘法得到最小二乘对数曲线和最小二乘误差;其次,在最小二乘对数曲线上选取两个特征点作为参考点,并在并在参考点周围按一定规则布置一系列的辅助点;然后,以两个特征点周围的辅助点两两结合构造出一系列的辅助对数曲线,并计算所有测量点到辅助对数曲线的距离极差值;通过比较和判断,最终实现对数曲线轮廓度的最小区域评定。列出了该评定技术的详细原理和步骤,实例证明,与最小二乘法相比,该算法具有极高的评定精度,适用于一些误差精度要求较高的零件或设备的轮廓度误差评定。