碧波液压网 欢迎你,游客。 登录 注册

基于图像处理技术的智能照明控制研究

版权信息:站内文章仅供学习与参考,如触及到您的版权信息,请与本站联系。

  

  

  1  前言

  智能照明控制是在“以人为本”作为前提的条件下, 对照明器具实行自动控制(包括: 照度的自动调节、灯的自动开关以及局部区域照度的控制)的行为。它应该符合两个相对独立的要求:

  (1)给人提供一个舒适的工作环境, 以保证工作人员具有较高的工作效率;

  (2) 通过合理的管理以节约能源和降低运行费用。具体说来, 上班时间, 智能照明控制系统自动调节光照度于最合适的水平。在天晴时, 灯光自动调暗; 在天阴时, 灯光自动调亮。

  同时, 利用红外及微波传感器探测是否有人工作,当无人工作时, 自动转入“夜间”工作状态。其原理框图如图1 所示。为了使工作人员有一个舒适的工作环境, 使用调光电子镇流器调光, 以减少工作人员长期工作而引起眼睛的疲劳感。随着时间的推移, 灯具的老化和房间墙面反射率不断衰减而引起照度下降, 而设计时的照度值高于标准照度值。这样, 在使用初期时, 既浪费能源, 又缩短灯具的寿命。为了保持照度维持基本不变而节约能源, 因此,可以通过智能控制来实现。但是, 该智能照明控制在工程施工中工作量大, 要求安装较多的传感器,特别是光传感器要分布在不同的地方。本文设计了一种基于图像处理技术的智能照明控制系统, 以解决上述问题。

  2  基于图像处理技术的智能照明控制系统

  图像处理技术是始于20 世纪50 年代, 1964 年美国喷射推进实验使用计算机对太空船送回的大批月球照片处理后得到了清晰逼真的图像。70 年代初, 由于大量的研究和应用, 图像处理技术已形成较完善的学科体系。数字图像信息可看成是一个二维数组f ( i , j) , 对图像各象素进行处理时, 输入图像F 上某象素的灰度值为f ( i , j) , 进行某种P 处理, 得到输出图像上该象素的灰度值为g ( i ,j) , 即:

  g ( i , j) = p ( f ( i , j) )因此, 如果将某一区域内的光照度大小的分布, 通过CCD 传感器变成一幅图像的象素灰度值, 那么,就可以将该区域的光照度大小的分布输出为一个待处理的二维数组f ( i , j) , 满足如下关系:

  f ( i , j) = p ( z ( x , y) )式中, z ( x , y) 为区域内的光照度分布函数;f ( i , j) 为该区域内的象素灰度值形成的数组元素;p ( z) 为变换关系。

  假设该数组的元素为: aij , 表示某矩形区域单位面积的照度值。并假设该数组为: m ×n (即m行n 列) 。f ( i , j) 称为照度矩阵:

  可知: 该区域的平均照度为:

  当该区域的平均照度值处在所要求的照度值范围内时, 执行机构维持现状不变; 否则该区域的平均照度值不满足设计要求, 通过执行机构将该区域的照度值加大或减小, 以满足设计需要。

你没有登陆,无法阅读全文内容

您需要 登录 才可以查看,没有帐号? 立即注册

标签:
点赞   收藏

相关文章

发表评论

请自觉遵守互联网相关的政策法规,严禁发布色情、暴力、反动的言论。

用户名: 验证码:

最新评论