一种新的锁相测速方法
1 概 述
目前常用的数字测速方法是M/T法。M/T法的原理是:在每个测速周期内,同时计取光电脉冲个数m1和时标脉冲个数m2。测速周期Td=Te+ΔT。其中Te是固定部分,而ΔT是指从Te结束到下一个光电脉冲到来这段时间。用下式可以计算转速n。n=A*m1/m2(1—1)A是常数。
从上面的分析可以看出,采用M/T法测速,遇到的最大问题就是测速周期的不固定。ΔT是不固定的,在电机高速时ΔT较短,而在电机低速时ΔT就会变得较长,从而整个测速周期也变得较长。这样就带来了两方面的问题。①由于低速运行时测速周期的变化,使得控制周期变长,控制效果变差,容易出现“爬行”等现象。②由于低速运行时测速周期变长,使得时标脉冲的计数周期变长,如果不采用较长位数的计数器计取时标脉冲,就会发生溢出。也就是说,一定位数长度的时标脉冲计数器对应着一定的可测得的最低转速,要测出很低的转速,就需要很长位数的时标脉冲计数器,在式(1—1)中,m2是多字节的数,计算式(1—1)需要做多字节的除法,增大了实时控制中的软件开销。
该文提出了一种全新的锁相测速方法,采用这种方法,无论电机高速运行还是低速运行,都可以获得一个始终跟随电机转速值的14位的并行的测速结果,测速周期短,测量精度高。测速单元与伺服系统的主CPU并行地工作。
2 锁相测速的基本原理
锁相测速环节的基本结构如图2—1所示。
在图2—1中,来自光电脉冲编码器的脉冲fe与来自数字控制振荡器DCO的脉冲fd分别经过“脉冲相位变换器1”和“脉冲相位变换器2”变换成相位信号Q1和Q2。Q1与Q2的相位差由“鉴相器”鉴得,如果Q1超前于Q2,相位差由P+的脉冲宽度表示;如果Q1滞后于Q2,相位差由P-的脉冲宽度表示。环节TJQ的作用是测量P+或P-的脉冲宽度,并且在锁相环中充当调节器,使得锁相环能够迅速锁定。在锁定的情况下,Q1和Q2的相位差或者为零,或者为恒定值,这时必有fe=fd。由于TJQ输出的数据Dout与数控振荡器DCO的输出脉冲频率fd成正比,将Dout锁存输出,即可跟踪光电脉冲编码器的输出脉冲的频率fe,从而跟踪电机的转速。
图2—1中的各个主要环节均可固化在“可编程逻辑器件ISP”中。
(1)脉冲相位变换器
脉冲相位变换器的原理如图2—2所示。Q是输出相位信号,fe是输入的光电脉冲编码器信号,时钟脉冲cp的频率大大高于fe的频率。cp反相后,得到了cp-,同步环节以cp-为基准,对输入的光电脉冲信号fe进行同步,得到了与cp-同步的脉冲f-。
相关文章
- 2022-08-18现场总线技术解析与其发展趋势
- 2023-02-22三级建模微型机电系统多学科优化设计法
- 2024-01-19电子束吸收剂量标准液体化学剂量测量系统的研究
- 2024-01-25秒表检定测量不确定度的评定
- 2021-12-25基于模糊神经网络的移动机器人沿墙导航控制设计
请自觉遵守互联网相关的政策法规,严禁发布色情、暴力、反动的言论。