基于模糊神经网络的移动机器人沿墙导航控制设计
1.引言
对于沿墙导航控制问题的分析,在环境探测方面由于采用了波束角小,镜面反射影响小的PSD传感器,使所测量的环境信息可靠性提高。在导航控制方面综合考虑室内环境特点和机器人状态,设计了多模态的沿墙导航控制算法……实验结果表明:机器人在室内环境下能较好地沿墙行走,运动轨迹平滑。所提出的基于PSD的沿墙导航系统比基于声纳的系统具有更高的性能价格比。它可以看作是移动机器人智能的低层行为,当与其它高层的智能行为相结合时,可以完成复杂的任务。墙体情况可分为以下几种:
跟踪一个未知的墙体。当获得的环境信息太少或无法获得,机器人的轨迹可能会特定为“沿着右边的墙体运动直到发现第一个门口”。跟踪一个已知墙体。机器人按照规划好路径跟踪轨迹,为了使算法误差保持在小范围内而跟踪墙体。
目前关于移动机器人沿墙导航控制已有较多研究,大多采用声纳传感器作为环境的感知设备。由于模糊逻辑技术和神经网络技术各自独到的特点,将模糊技术和神经网络有机结合组成模糊神经网络控制系统,可实现模糊规则自动提取、模糊隶属函数的自动生成及在线调节。
2 模糊神经网络结构
2.1 输入输出值模糊化
本文研究的移动机器人沿墙导航控制融合机器人声纳检测采集到的数据,判断机器人的位姿,然后通过模糊神经网络算法控制移动机器人的动作,使其在一定距离内沿墙体运。针对在基于行为的移动机器人沿墙导航控制器的设计中缺乏足够的先验知识的问题,用模糊神经网络直接逼近连续状态和动作空间中的Q值函数。利用对Q值函数的优化获得控制输出。本文中移动机器人侧壁上方安装有16个声纳,按顺时针排列从0#到15#。
移动机器人要避免与墙体碰撞又要保持一定距离,所以本文为每个声纳设置一个阈值,当声纳检测到的距离值大于或小于这个阈值就采取相应的动作。这样,将声纳采集的距离值与各自相应的阈值相减得到差值△di(i=O,1,2,…,15)作为模糊神经网络的一个输入;移动机器人的角度信息θ作为另外一个输入。将距离差值△di和角度θ输入模糊化如下:
距离差值△di:较小(NB),小(NS),中(Z),大(PS),较大(PB)。
角度θ:左(L),偏左(LS),正(Z),偏右(RS),右(R)。
输出变量为移动机器人的左右轮速Vl、Vr,模糊化如下:
左右轮速Vl、Vr:左转(TL),前进(G),右转(TR)。
2.2 模糊神经网络结构图
模糊神经网络结构图如图1所示,A为输入层,输入变量分别是前面所说的距离差值△di(i=0,l,2,3,4)和角度θ。A层的作用是将输入值传送到下一层。
相关文章
- 2023-09-27照相机性能指标的微机检测
- 2022-09-05夹持方式对镜面热变形及偏转的影响
- 2023-10-10滞迟动力吸振器简谐激励响应的迭代计算方法研究
- 2018-10-11准定常流法测定瞬时流量的判据研究
- 2023-08-03旋转编码器在数控珩磨机中的应用
请自觉遵守互联网相关的政策法规,严禁发布色情、暴力、反动的言论。