一种长序列小波变换快速算法的DSP实现
1 引 言
由于小波变换具有良好的时频分析特性,已经广泛应用于各种信号分析领域。由于小波变换算法的复杂性,如果直接计算小波变换,所需内存较大,耗时较长。尽管当今处理器芯片运算速度得到了大幅度的提高,但仍然在实时性上不能满足要求。为了简化计算过程,人们相继设计了一系列的快速算法来计算小波变换,以降低其运算次数。
小波变换在大多数具体应用中主要是在线信号的实时分析处理,微机和通用的微处理器在运算速度上难以适应信号实时、高精度处理的要求。数字信号处理器(DSP)就是为了适应这种需求而开发的。美国TI公司是全球最大的DSP供应商,其生产的TMS320C55x系列16位定点DSP芯片具有低功耗、高性能等特点,具有广泛的应用领域,本文应用该系列DSP芯片,将文献[2]提出的小波变换快速算法用C语言开发加以实现,解决了小波变换实时、高精度处理的要求。
2 小波分解过程的DSP实现
小波分解过程中算法实现的数据结构存储和寻址方式如图1所示。
小波分解过程中C语言算法实现的伪代码如下:
下面分别对伪代码中各个子程序模块的具体实现进行分析。
2.1 边界延拓模块
数据边界延拓程序模块的实现:
定义一个数据地址指针pSrc始终指向载人的源数据头地址,即pSrc=Layer1Data+M-1,在源数据的首尾各对称延拓M-1个点。该模块的C语言实现代码如下:
2.2 数据搬移模块
从源数据区搬送数据到计算区的程序模块实现:定义一个临时地址指针pTemp1指向扩展后的数据首地址,即:pTemp1=pSrc- M+1,SegNum为长序列分段数,将数据从数据源区分段搬送到计算区,并将16 b数据扩展为32 b,通过对虚部填零,组成复数输入数据数组signal,该模块C语言实现代码如下(i为分段标记,N为分段圆周卷积长度):
2.3 基于圆周卷积的线性卷积模块
用圆周卷积计算signal和分解滤波器组dec_filter的线性卷积out_buffer,该模块的C语言实现代码如下:
2.4 结果保存模块
将计算区的结果保存到目标区的程序模块实现:将out_buffer去掉前面M-1个复数,后面N-M+1个复数只取实部,即只取低频分量,对取出的实部乘以比例系数,这里采用的是小数乘法,然后再取前16 b,将结果存到数据存储目标区Layer2Data2,定义目标区存储的首地址指针为pDest=Layer2Data+M-1,然后定义临时数据指针 pTemp2=pDest,该模块C语言实现代码如下:
将保存在目标区内的数据减采样一半,仍旧保存在目标区内,该模块的C语言代码如下:
相关文章
- 2024-02-08油类的自动计量
- 2023-08-18一种现场γ射线能谱测量仪的研制
- 2024-03-15风冷节能装置的应用探讨
- 2022-12-26基于SPCE061A的汽车倒车防撞报警器设计与研究
- 2022-06-02MIC-2031-2FCAN转以太网虚拟总线网关在工业控制中的解决方案
请自觉遵守互联网相关的政策法规,严禁发布色情、暴力、反动的言论。