碧波液压网 欢迎你,游客。 登录 注册

扩频通信芯片STEL-2000A的FPGA实现

版权信息:站内文章仅供学习与参考,如触及到您的版权信息,请与本站联系。

  扩频通信因其很好的保密性、隐蔽性、抗干扰性以及抗多径效应等优势得到了快速发展和广泛应用。因此,许多公司推出了各种型号的扩频集成电路,典型的有STEL-2000A,该芯片因外围电路简单而得到了广泛应用。然而,由于该芯片是基于专用集成电路(ASIC)技术,其内部电路和大部分功能已经固化,对不同的场合缺乏灵活性,对以后系统升级也造成很大困难。而现场可编程门阵列(FPGA)内部资源丰富,功能强大,并且可重复编程,现场可修改设计,加之其相应的EDA软件功能完善,仿真能力好,有丰富的IP核资源,在成本和灵活性等方面都有很大优势,使得利用FPGA进行复杂数字系统的设计已成为主流。

  近几年来国内外有许多学者利用FPGA对扩频通信系统中的某一个模块进行设计,如:数控振荡器、PN码发生器、匹配滤波器。也有学者尝试对整个系统进行设计,但这些努力大多仅限于软件上的功能仿真,并且对一些关键模块缺乏清晰的描述。本文对扩频芯片关键模块的实现方法进行了阐述,并推导出详细参数,基于ISE 10.1实现了整个系统,最后下载到FPGA芯片中调试成功。

  1 STEL-2000A系统的整体框架

  1.1 发射子系统

  在发射子系统中,如图1所示,输入的串行二进制数据序列首先进行串并转换,分成两路(I路和Q路)速率减半的序列,由于采用QPSK调制方式,为了避免相位模糊问题,在串并转换后进行差分编码,然后将差分编码器的输出序列与PN码生成器输出的伪随机序列进行异或运算,完成信号的频谱扩展,再将扩频输出的两路数据分别与数控振荡器(NumericallyContmlkd Oscillator,NCO)的两路正交载波输出各自相乘,最后将相乘后的结果相加,这样就实现了DQPSK调制,输出的是数字化的已调信号。

  1.2 接收子系统

  接收系统要完成数字中频信号到基带信号的转换、信号的捕获、同步、解扩、差分解调以及并串转换等功能,如图2所示。进入接收系统的是经正交采样(Quadraturc Samping)后的数字中频信号,经下变频器生成基带信号,再将其输出送入匹配滤波器。在匹配滤波器中,主要实现信号的同步与解扩。解扩后的数据进行差分解调,差分解调过程中的中间结果送入自动频率控制(Automatic Frequency Control,AF-C)模块以生成校正信号来自动调整NCO的输出频率,最后将解调输出数据经并串转换便得到原始数据序列。

  2 关键模块分析与实现

  2.1 NCO模块

  NCO采用Xilinx公司提供的直接数字式频率合成器(Direct Digital Synthesizer,DDS)IP核,DDS的工作原理如图3所示,在参考时钟的驱动下,N位加法器对频率控制字K和N位累加寄存器中的值进行相加,相加后的结果存入累加寄存器中,以累加寄存器中的值为地址将波形存储器里相应地址的数据读出,即输出正弦或余弦信号的幅度值。

你没有登陆,无法阅读全文内容

您需要 登录 才可以查看,没有帐号? 立即注册

标签:
点赞   收藏

相关文章

发表评论

请自觉遵守互联网相关的政策法规,严禁发布色情、暴力、反动的言论。

用户名: 验证码:

最新评论