纳米加工技术及其应用
纳米尺度的研究作为一门技术,是80年代刚刚兴起的.它所研究的对象是一般研究机构很难涉猎的即非宏观又非微观的中间领域,有人称之为介观领域.所谓纳米技术通常指纳米级(0.Inm~loonm)的材料、设计、制造、测量、控制和产品的技术.纳米技术主要包括纳米级精度和表面形貌的测量;纳米级表层物理、化学、机械性能的检测;纳米级精度的加工和纳米级表层的加工一一原子和分子的去除、搬迁和重组;纳米材料;纳米级微传感器和控制技术;微型和超微型机械;微型和超微型机电系统;纳米生物学等;纳米加工技术是纳米技术的一个组成部分.纳米加工的含义是达到纳米级精度(包括纳米级尺寸精度,纳米级形位精度和纳米级表面质量)的加工技术.
1与常规精加工的比较
纳米级加工中.工件表面的原子和分子是直接加工的对象.即需切断原子间的结合.纳米加工实际已到了加工的极限.而常规的精加工欲控制切断原子间的结合是无能为力的,其局限性在于:
l)高精度加工工件时,切削量应尽量小而常规的切削和磨削加工,要达到纳米级切除量,切削刀具的刀刃钝圆半径必须是纳米级,研磨磨料也必须是超细微粉.目前对纳米级刃口半径还无法直接测量.
2)工艺系统的误差复映到工件,工艺系统的受力/热变形、振动、工件装夹等都将影响工件精度.
3)即使检测手段和补偿原理正确,加工误差的补偿也是有限的.4)加工过程中存在不稳定因素.如切削热,环境变化及振动等.
由此可见.传统的切削/磨削方法,一方面由于加工方法的局限或由于加工机床精度所限,显示出在纳米加工领域应用裕度不足.另一方面,由于科技产业迅猛发展,加工技术的极限不断受到挑战.有研究表明,磨削可获得035nm的表面粗糙度,但对如何实现稳定、可靠的纳米机加工以及观察研究材料微加工过程力学性能则始终受到实验手段的限制.因此纳米机加工必须寻求新的途径即直接用光子、电子、离子等基本粒子进行加工.例如,用电子束光刻加工超大规模集成电路.
2纳米级加工的关键技术
(l)测量技术·
纳米级测量技术包括纳米级精度的尺寸和位移的测量、纳米级表面形貌的测量.纳米级测量技术主要有两个发展方向:1)光干涉测量技术:可用于长度、位移、表面显微形貌的精确测量.用此原理测量的方法有双频激光干涉测量、光外差干涉测量、X射线干涉测量等.2)扫描探针显微测量技术:主要用于测量表面微观形貌.用此原理的测量方法有扫描隧道显微镜(STM)和原子力显微镜(AFM)等.其原理使用极尖的探针对被测表面扫描(探针和被侧表面不接触),借助纳米级的三维位移控制系统测量该表面的三维微观立体形貌.
相关文章
- 2023-09-06缩短微机械圆盘谐振器缝隙的电极移动法
- 2023-03-03挤压式摩擦试验装置改进研究
- 2023-08-26地铁站台噪声特性分析
- 2022-05-31利用MSDS加强高校实验室安全管理的探讨
- 2023-04-30群相可控光学延迟线色散特性分析
请自觉遵守互联网相关的政策法规,严禁发布色情、暴力、反动的言论。