碧波液压网 欢迎你,游客。 登录 注册

超磁致伸缩微位移驱动系统的研究

版权信息:站内文章仅供学习与参考,如触及到您的版权信息,请与本站联系。

  

  1 前言

  微位移技术是精密加工和超精密加工的关键技术之一,被广泛应用于超精密加工中,以调整工具、保证工件的加工尺寸精度和表面质量。如超精密车削中,金刚石刀具的切深微调要保证在亚微米级的精度;在超精密磨削中,砂轮的微进给量要求达到百分之几微米;用于超精密机床的误差补偿微量进给机构,其位移精度要求更高。近年来,随着大规模和超大规模集成电路的迅速发展,微机械研究的兴起,以及与之相应的微操作的迫切需要,对微位移技术提出了越来越高的要求,要求其定位精度高、响应速度快、转换效率高、功率密度大。

  目前,随着一些新型功能材料的出现,为微位移及其相关的研究又开拓了一片新的领域。本文着重对基于超磁致伸缩材料———一种新型的电(磁)—机械能转换材料的微位移驱动系统进行研究。

  2 超磁致伸缩材料及其驱动原理

  稀土铁系超大磁致伸缩材料是一种新型、高效的磁(电)—机械能转换材料,是继稀土永磁、稀土发光、稀土高温超导材料之后兴起的又一种稀土功能材料,是由美国水面武器中心的Clark博士于20世纪70年代初首先发现的在室温和低磁场下有很大的磁致伸缩系数的三元稀土铁化合物。与压电材料(PZT)及传统的磁致伸缩材料镍、钴等相比,超磁致伸缩材料具有独特的性能:在室温下的应变值很大,是镍的40~50倍,是压电陶瓷的5~8倍;能量密度高(14000~25000J/m3),是镍的400~500倍,是压电陶瓷的10~14倍;机电耦合系数大(0.72);响应速度快(达到μs级);输出力大,可达220~880N[1]。

  超磁致伸缩材料的特性可由磁致伸缩方程表示,式(1)和式(2)是考虑热变形的磁致伸缩方程式[2]。

式中:ε、H、B、σ和d分别表示超磁致伸缩材料的应变、平均磁场强度、磁感应强度、内应力和磁致伸缩应变系数;α和ΔT分别表示超磁致伸缩材料单位长度的热膨胀系数和平均温升;sH和μσ分别表示超磁致伸缩材料的柔度系数和磁导率,它们分别受磁场强度及应力的影响。

  图1是笔者根据超磁致伸缩材料的驱动特性所采用的驱动原理简图。图中,导磁体9、永久磁铁8与超磁致伸缩材料5组成闭合磁路,以减少磁泄漏;预压弹簧6给超磁致伸缩材料5提供一定的预压力,以增大其伸长量;超磁致伸缩材料5的驱动磁场是由永久磁铁8产生的偏置磁场与驱动线圈10产生的变化磁场叠加而成,并通过改变可控恒流源3的驱动电流以产生相应的微位移;为了抑制由于驱动线圈10的发热而引起的超磁致伸缩材料5的热伸长,采用通入恒温水的方法将超磁致伸缩材料的温升控制在一定范围内。

你没有登陆,无法阅读全文内容

您需要 登录 才可以查看,没有帐号? 立即注册

标签:
点赞   收藏

相关文章

发表评论

请自觉遵守互联网相关的政策法规,严禁发布色情、暴力、反动的言论。

用户名: 验证码:

最新评论