膜片式液压微位移执行器设计与特性分析
微位移执行器是实现高精度控制的关键装置,广泛应用于精密伺服系统、芯片生产以及超精密加工领域。针对传统微位移执行器结构复杂、输出力小、行程短等问题,提出基于帕斯卡原理的膜片式液压微位移执行器。首先,建立了复合载荷下执行器的力学模型,并采用逐次修正法推导了应力-应变的迭代求解式。其次,研究了执行器关键参数对执行器行程和应力的影响规律。在此基础上,建立了以材料强度和设计行程为约束的膜片式液压执行器的优化设计流程。最后,通过有限元仿真验证了执行器的驱动压力-位移特性、行程及负载能力。结果表明,执行器表现出良好的驱动压力-位移线性关系,此外其40μm/mm的伸长率远优于压电陶瓷。在4 MPa的驱动压力下,执行器可实现1 mm的行程,并提供最大10790 N的输出力,即使在外负载为5395 N时仍能保持0.5 mm的行程。
一种新型三自由度微定位新方法
设计了一种基于压电陶瓷的三维微定位系统,通过12个空间分布的压电陶瓷微驱动器及4个工作平台的配合,实现X、Y、Z向的精密位姿控制。阐述了微定位原理、建立了载物台位姿与压电陶瓷微驱动器伸缩量之间的关系,介绍了系统误差来源以及微定位装置的构造。该研究可望为一些高科技领域的微进给提供实用新技术。
压电陶瓷微位移特性的电脑接触式干涉测量法
介绍了压电陶瓷微位移器的工作原理,在此基础上提出了一种用由立式接触式干涉仪改造的电脑接触式干涉仪测量微位移特性的方法。其完善的测试软件系统,实现了对压电陶瓷微位移量的自动化、智能化精密测量。并对自行设计的压电陶瓷微位移装置进行了测试,得出电压-位移的关系曲线和迟滞曲线,精度和重复性值达0.01μm。
一种新型GRIN透镜光纤加速度计的研究
研究了一种新颖的光纤加速度计,阐述了三光纤GRIN透镜加速度敏感元件的工作原理及其结构设计.该传感器包括三根光纤、一个GRIN透镜和一个质量块.根据光功率耦合原理,对透镜倾斜时的误差进行了定量分析.该加速度计具有结构新颖、体积小和灵敏度高等优点,是一种具有多用途的加速度传感器.
一种用于压电驱动微动工作台的测控系统
研究了压电陶瓷驱动器特有的迟滞和儒变特性,针对它的这些非线性特点,给出了一种有效消除这些非线性误差的闭环控制方案.采用高精度A/D和D/A转换芯片,设计了基于PC机并行增强口EPP协议的控制板.在自行设计高压驱动电路的基础上,研制出了用于纳米级定位的数字闭环控制器.测试结果表明,此控制器很好地克服压电陶瓷驱动器的非线性特性,系统定位精度优于10 nm.
基于椭圆光斑的离轴微位移计量
提出一种基于离轴法并采用椭圆光斑的光学微位移计量手段.模拟分析给出了椭圆光斑在线性度、灵敏度和动态范围等方面对探测性能带来的影响.基于这一微位移计量原理,在激光直写设备上制作了具有实用价值的圆光栅,这也表明半导体激光器可以取代传统的氦氖激光器并无需光斑整形.
基于AFM的微位移测量新方法研究
提出了一种测量物体微位移的新方法.原子力显微镜作为测量工具,样品和扫描器置于待测物体上,物体每移动一定距离就由AFM扫描获得一幅样品图像,由此获得一系列连续的序列图像.采用模板匹配方法检测相邻序列图像的偏移,从而可计算出物体的微位移.实验结果表明,用该方法还可实现物体二维方向的微位移测量,且精度达到纳米量级.
电感式微位移测量仪的设计与实现
介绍了一种电感式微位移测量仪的设计与实现.该仪器以单片机为中心,采用电感式位移传感器和液晶汉字显示等技术实现了微位移的自动测量、显示、打印及通信.论述了仪器的设计思想,重点介绍了该仪器的组成与数字滤波器的设计.
白光干涉检测仪微位移系统的精确控制方案
针对小电容压电陶瓷特有的迟滞曲线,建立实验系统采集压电陶瓷微位移器的位移-电压数据,然后用最小二乘法建立数学模型;通过计算机程序控制压电陶瓷驱动电压,实现了白光干涉检测仪微位移系统的开环控制,总位移20μm,精度可达0.03μm,并且给出了控制程序的流程图。
超磁致伸缩微位移驱动系统的研究
超磁致伸缩材料是近年来发展起来的一种新型功能材料,具有在室温下应变量大,能量密度高,机电耦合系数大等特性.文章分析了超磁致伸缩材料的驱动原理,介绍了超磁致伸缩微位移驱动系统的组成及工作原理,并对该系统的伸长量、微位移精度等性能指标进行了实验研究.