碧波液压网 欢迎你,游客。 登录 注册

三坐标测量机测头半径实用补偿算法

版权信息:站内文章仅供学习与参考,如触及到您的版权信息,请与本站联系。

  

  反求工程指的是针对已有产品原型,消化吸收和挖掘蕴含产品设计、制造和管理等各个方面的一系列分析方法、手段和技术的综合。随着测量技术及计算机技术的飞速发展,反求工程的研究是提高我国制造业水平的重要手段,有着重大意义。

  规则零件的测量通常是很容易的,对于含有自由曲面结构的零件测量则相对复杂。在测量过程中,记录的测量点数据都是测头中心的位置,并不是测头和被测物体接触点的坐标,所以整个测量数据中都引入了测头半径误差。目前的 CMM 测量广泛采用二维自动补偿方法,即在测量的时候将测量点和测头半径的关系都处理成二维情况。但对于一些自由曲面,测量时测点位置的曲面法矢量通常和测轴不在同一平面内,此时按二维补偿会出现误差,必须进行三维补偿[1,2]。

  进行测头半径补偿的核心问题就是确定被测轮廓各点的法矢量。能够实现三维补偿的有微平面法、三点共圆法、拟合法、三角面片法和参数曲面法等。这些算法都较为繁琐,工作量大,适合处理复杂曲面的补偿问题[2]。为此,本文提出了一种原理简单且计算量小的半径补偿方法。首先,对单个截面上的测量点进行插值并细化,得到每个截面的细化点;其次,对截面进行插值并细化截面,得到整个曲面上的细化点;最后利用插值求导的方法对曲面上的细化点求纵向和横向的切向量,再利用切向量求法向量并进行测头半径补偿。

  1 测量点细化

  测头沿测量线测量一个截面,并对每个截面的测量点进行插值细化,一个截面测量完成之后,再进行下一个截面的测量,如图 1 所示。在测量过程中,利用自然边界条件下的样条插值函数

  对该截面上的测量点 m_point 进行插值[3]。沿 x方向利用插值函数 Si(x)求得各细化点的 z 坐标值(同一截面上有相同的 y 坐标),并保存在点m_pointInterplate_1 中。

  在测量过程中,每完成一个点的测量就调用绘制点的函数绘制该测量点 m_point。截面上有两个及以上测量点时,调用插值计算函数对测量点 m_point进行插值,然后对点 m_pointInterplate_1 依次连线,这样就实现了由点到线的转化。

  2 截面细化

  当有两个及以上截面时,对已经测量完的截面进行三角网格连接,这样就实现由线到面的过渡,其程序框图如图 2 所示。结合程序对实物鼠标进行测量,测量过程中屏幕显示如图 3 所示。截面的细化主要是对截面进行插值,从而缩小截面之间的距离,使曲面更加光滑。由于每个截面上的测量点个数并不相等,所以利用插值函数 Si(y)对细化点m_pointInterplate_1 进行插值。沿 y 方向利用插值函数 Si(y)分别求得细化点的 x 和 z 坐标值。先对m_pointInterplate_1 的 y 和 x 坐标进行插值,并将插值 结 果 保 存 到 m_pointInterplate_YX 中 ; 再 对m_pointInterplate_1 的 y 和 z 坐标值进行插值,并将插值结果保存到 m_pointInterplate_YZ 中;最后保存x、y 和 z 坐标到点 m_pointInterplate 中,其程序框图如图 4 所示。这样就完成了截面的细化,缩小了截面之间的距离,使截面比较光滑,效果如图 5 所示。

你没有登陆,无法阅读全文内容

您需要 登录 才可以查看,没有帐号? 立即注册

标签:
点赞   收藏

相关文章

发表评论

请自觉遵守互联网相关的政策法规,严禁发布色情、暴力、反动的言论。

用户名: 验证码:

最新评论