超磁致伸缩驱动器磁路设计与仿真
磁路主要为GMA提供激励磁场与偏置磁场叠加的驱动磁场,驱动磁场强度直接影响GMA的输出位移。因此,GMA磁路的结构参数设计是提高电磁转换效率和充分发挥GMM棒特性的关键因素。通过分析GMA的工作原理,将GMM棒中轴线上的磁场强度均匀率作为评价标准和主要设计原则。在给定输出位移和输出力的基础上,分别对偏置磁场选取以及GMM棒、激励线圈、磁回路的结构参数进行设计;使用Ansoft Maxwell仿真分析GMA的磁路。结果表明GMA磁场分布更均匀,使均匀率提高到97.62%,验证设计的正确性。
超磁致伸缩驱动器工作温升抑制的有限元分析
超磁致伸缩驱动器在工作时,温度的升高对超磁致伸缩棒的输出特性有较大影响.在分析温升对GMA输出精度影响的基础上,针对大功率、长时问工作的使用场合,引入了有限元分析方法对GMA进行热分析.分别设计了两组GMA,其中一组具有强制水冷温控系统,另一组无温控制装置.通过热分析得到了两组GMA在电流为4A时的温度场分布,从而可用于指导热设计。
超磁致伸缩驱动器的致动机理研究
介绍了超磁致伸缩驱动器的特点及其应用范围,论述了驱动器的结构参数及工作原理,建立了基于畴壁理论的GMA致动模型,对采用国产材料研制的驱动器静态位移输出特性进行了测试,并对致动模型进行了实验分析。
超磁致伸缩驱动器输出特性的实验研究
介绍了超磁致伸缩驱动器的特点和应用情况,论述了驱动器结构和内部磁路设计方法,对采用国产材料研制的驱动器位移及力的输出特性进行了测试,并对该驱动器在低频范围输出力的频率响应进行了实验.实验结果表明,该驱动器具有理想的动静态输出精度和输出范围,可以用于精密设备的低频主动隔振平台中.
一种基于超磁致伸缩效应的新型液压高速开关阀的研究
文章介绍了一种新型的液压高速开关阀,它采用了超磁致伸缩驱动器和锥体式阀芯结构.该阀具有很高的切换速度和频率,可以用来作为大流量高速开关阀的先导控制阀,也可以在小流量回路中直接作为控制阀使用.
超磁致伸缩驱动器及其微位移特性研究
基于超磁致伸缩材料的磁致伸缩效应,研制一种具有可控微位移功能的超磁致伸缩驱动器,并对外加预压力下该驱动器的微位移特性进行了实验研究。采用位移传感器、数据采集卡、驱动电源等,搭建超磁致伸缩驱动器的微位移性能测试台,实验研究在外加电流、预压力下,超磁致伸缩驱动器的输出位移与外加电流的关系。研究结果表明:在外加预压力为0~300 N时,驱动器的输出位移随外加电流的增加而增加;而在外加预压力为300~400 N时,超磁致伸缩驱动器的输出位移随输入电流的增大而减小。
基于LabVIEW的GMA测控系统设计及实验研究
针对应用于滑动轴承精度控制中的超磁致伸缩驱动器(GMA),基于LabVIEW软件开发平台,设计GMA测试控制系统,并利用该系统进行GMA控制滑动轴承实验台基座的实验。结果表明:通过控制程控电源输出电压的频率和幅值,能够有效控制GMA的伸长量,精确控制实验台基座的位置,证明了GMA测试系统的有效性,为利用GMA控制轴承间隙抑制转子振动提供了参考。
基于超磁致伸缩驱动的输液泵设计及可行性研究
针对传统机械式输液泵的输液精度低、输液不平稳等问题,提出一种基于超磁致伸缩微驱动的输液泵的概念设计。介绍该新型输液泵概念结构和工作原理;对输液泵的超磁致伸缩驱动器装置进行初步的可行性研究。结果表明:在外加电流为0~2 A时,超磁致伸缩驱动器的输出力达到470 N、输出位移达到58μm,可控性能优异,验证了超磁致伸缩微驱动输液泵设计的可行性。
超磁致伸缩驱动器磁滞数理模型研究进展
对现有超磁致伸缩驱动器(GMA)数理模型的研究进展进行分类综述。从数学模型和物理模型两方面,系统地总结了各类模型的应用现状、发展分支及其发展趋势;综合对比和评价了Preisach模型、PI模型和J-A模型的优势与不足;探讨了GMA数理模型的未来研究方向。
一种新型液压高速开关阀的设计与研究
介绍了一种新型的液压高速开关阀,它采用了超磁致伸缩驱动器和锥体式阀芯结构.该阀具有很高的切换速度和频率,可以用来作为大流量高速开关阀的先导控制阀,也可以在小流量回路中直接作为控制阀使用.