蠕动式精密直线驱动器
基于蠕动原理和误差补偿技术,用压电陶瓷作为动力源设计了一种精密直线驱动器.建立了驱动器的动力学模型,并制作了样机.试验表明:在计算机闭环控制下,该驱动器能够可靠地实现双向运动.在行程为1 mm时,定位精度达到±0.01 μm;有效驱动力为20 N.
采用压电微泵散热的超磁致精密驱动器
针对超磁致精密驱动器(GMA)工作时因电磁线圈发热而导致GMA定位精度差的问题,采用体积小、噪声低、无电磁干扰的压电微泵驱动水流进行散热,以控制超磁致伸棒的温度.制作了一台GMA样机,设计了一个热变形测试系统,进行了GMA在无水冷和有水冷条件下的热变形对比实验.结果表明,提出的温控措施是有效的.
压电型步进式精密直线驱动器的试验研究
利用压电陶瓷的逆压电效应,基于步进运动原理和误差补偿技术设计了一种高精度定位的大行程精密直线驱动器,制作了样机,进行了静态特性和幅频特性测试以及运动性能试验,给出了驱动器的移动速度与工作电压、频率之间的试验关系曲线.结果表明:在计算机闭环控制下,驱动器能稳定地实现双向运动,在行程1 mm时,定位精度达士0.01 μm,有效驱动力达13.5 N.
GMM的发展现状及其在精密致动器件中的应用
超磁致伸缩材料的制备及其应用开发已成为当前机电工程领域中的研究热点.本文回顾了超磁致伸缩材料的发展,全面分析了超磁致伸缩材料的特点,系统地介绍了国内外超磁致伸缩材料在精密致动领域的应用及其开发情况,并对该材料未来的发展及应用领域作了展望.
基于Solidworks的超磁致驱动装置设计与建模
介绍了使用SolidWorks进行建模的特点和一般设计过程,并结合超磁致驱动装置的设计运用SolidWorks来进行零件设计、生成装配体、运动仿真及生成二维工程图.在对超磁致驱动装置进行建模的过程中,发现装配中存在的干涉和间隙等问题,进行了及时修改,确保设计更加合理.
超磁致伸缩驱动器工作温升抑制的有限元分析
超磁致伸缩驱动器在工作时,温度的升高对超磁致伸缩棒的输出特性有较大影响.在分析温升对GMA输出精度影响的基础上,针对大功率、长时问工作的使用场合,引入了有限元分析方法对GMA进行热分析.分别设计了两组GMA,其中一组具有强制水冷温控系统,另一组无温控制装置.通过热分析得到了两组GMA在电流为4A时的温度场分布,从而可用于指导热设计。
超磁致伸缩驱动微夹钳研究
为了克服现有微夹钳夹持力和夹持范围不足的问题,以超磁致伸缩材料(GMM)为驱动源提出了一种新型的微夹钳.利用GMM棒在磁场变化时发生伸缩形变提供驱动力,并采用柔性铰链和杠杆机构对输出位移量进行放大,分析并优化磁回路以减小损耗.... 展开更多
微致动技术的发展与应用
以精密工程、超精密工程为背景,总结了微致动技术的定义、特征与分类.分别阐述了传统和现代微致动的工作原理,介绍了其发展现状,并讨论了微致动应用形式.
超磁致伸缩致动器热变形影响及温控研究
在分析超磁致伸缩致动器热变形影响的基础上,结合实验论证,构建了在大电流、长时间且高精度场合下能对致动器进行整体温控的装置。设计并制作了一台超磁致伸缩致动器样机,在其电磁线圈的骨架中设置了内外两个水冷腔。通过恒温水的循环流动,带走线圈热量,以控制磁致伸缩棒和壳体的温度。进行了多组热变形对比实验,结果表明,致动器的整体温控装置有效地抑制了致动器的热变形影响,适合于大电流、高精度场合。
四杆机构演化仪的设计与运动分析
通过曲柄摇杆机构为基本机构,运用特殊的关节和四杆机构的演化原理,设计了一种四杆机构演化仪。可在一个装置中完成曲柄摇杆机构、双摇杆机构、双曲柄机构、曲柄滑块机构、曲柄摇块机构、导杆机构、双滑块机构等八种四杆机构的运动过程,并且通过各四杆机构之间转换完整的展示了四杆机构的演化原理。基于TRIZ理论进行了四杆机构演化仪的创新设计,完成了整体结构设计。运用复数矢量法对基本机构进行运动分析并使用Adams进行运动仿真,从中获得了机构的精确运动特性。