基于STM32电力数据采集系统的设计
0 引 言
我国经济的高速发展带动了各行业对电力的大量需求,因此,迫切需要对电力供应进行科学的管理,电力数据采集系统作为电力供需管理的基本环节,发挥着重要作用,电力系统的发展对电力数据采集系统的精确性、实时性以及可靠性都提出了更高的要求。传统的电力数据采集系统[1]受限于有限的存储空间和通信接口,存在精度不高、实时性差、采集信息量小等缺点,已无法满足实际的电力系统调度与管理需要,本文提出的基于STM32的新型电力数据采集器充分利用了STM32丰富的片上资源,大大节约了硬件投资,利用STM32具有快速采样的高性能ADC、先进的电源及时钟管理、双看门狗等功能,从而大大增强了系统的实时性与可靠性,精度显著提高,同时功耗大为降低。
1 总体设计方案
本系统由模拟量与开关量采集模块、通讯模块以及上位机人机交互模块组成,系统框图如图1所示。首先电压、电流等模拟信号经信号调理电路调理后,经模数转换器ADC转换为数字信号,再由STM32进行数据处理;开关量信号则通过I/O口输入,STM32通过中断或查询方式进行读取[2]。电力数据经采集处理后,由液晶屏进行显示,同时进行储存以便对历史数据进行查询。为了使数据显示更加直观以及远程监控,通过RS485与上位机通信[3]。
2 系统硬件设计
2.1 STM32片上资源
本系统采用了ST公司基于Cortex-M3内核的32位增强型闪存微控制器STM32F103ZE作为控制核心,Cortex-M3内核是专门设计于满足集高性能、低功耗、实时应用、具有竞争性价格于一体的嵌入式领域的要求[4]。该芯片最高工作频率可达到72 MHz,具有512 K字节的闪存以及64 K字节的SRAM,丰富的片上资源大大简化了系统硬件,同时大大降低了系统功耗。
STM32F103ZE 12位ADC为逐次逼近型模数转换器,各通道的转换可以单次、连续、扫描或间断模式执行,转换结果以左对齐或右对齐方式存储在16位数据寄存器中[5]。通道采样时间可编程,总转化时间可缩减到1μs,此外,多种转换模式供选择,支持DMA数据传输。本系统采用定时器触发的同步注入模式,能够对多路信号进行同步采样。
STM32F103ZE具有5个USART串行通信接口,内置分数波特率发生器,发送与接收共用可编程波特率,最高达4.5 Mbit/s,数据字的长度、停止位均可设置。此外,灵活的静态存储器控制器FSMC能够通过同步或异步存储器与16位PC卡接口相连,便于外扩存储器和液晶显示屏。
2.2 数据采集模块设计
数据采集包括对于模拟量与开关量的采集两部分。
1)模拟量数据采集
由于电力数据采集信号为高电压信号和大电流信号,因此,首先要将其调理为满足STM32F103ZE ADC输入范围的电压信号,以便进入ADC转换为数字量。各相电流信号经电流互感器和电流变送器,各相电压信号则通过电压互感器和电压变送器变换为低电压信号,输入到STM32的ADC模拟输入通道,其幅值范围为0~3.3 V。本系统采用同步注入模式配置ADC1的注入组通道采样Ua, Ia,配置ADC2的注入通道采样Ub,Ib,从而实现Ua/Ub及Ia/Ib的同步采样。又由于Ua+Ub+Uc =0,Ia+Ib+Ic =0计算出Uc,Ic。定时器2的TRGO事件触发A/D转换,1.5周期的采样时间,可以达到1μs的转换时间,数据右对齐格式进行存储,使用DMA数据传输[6],不需CPU干预,即可将ADC1和ADC2存储在寄存器ADC_JDRx(x=1,2)中的转换数据快速存放到指定区域。
相关文章
- 2024-08-14冰球式蓄冷系统运行能耗的分析
- 2023-02-16一种无线传输数字式电子皮带秤的设计
- 2024-07-10谈谈电子秤中的疲劳强度设计
- 2024-04-23一种可弥补信号缺陷的细分方法
- 2022-08-23时间继电器在工控中的应用
请自觉遵守互联网相关的政策法规,严禁发布色情、暴力、反动的言论。