碧波液压网 欢迎你,游客。 登录 注册

基于LabVIEW的参量阵测试系统设计

版权信息:站内文章仅供学习与参考,如触及到您的版权信息,请与本站联系。
液压导航网

  引 言

  声学参量阵(Parametric Acoustic Array)是利用介质的非线性特性,使用两个沿同一方向传播的高频初始波在远场中获得差频、和频及倍频等的声发射装置。根据介质中声吸收原理,吸收与信号频率的平方成正比,在声波的传播过程中,和频及倍频等频率较高的信号衰减很快,经过一段距离后,仅剩下频率较低的差频信号。与常规换能器相比,首先,该差频信号具有更好的指向性;其次,该差频信号几乎没有旁瓣,避免了在浅海沉底或沉积物探测过程中由于边界不均匀所带来的干扰和信号处理的复杂性;第三,差频信号具有大于10 kHz的带宽,空间分辨率高,抗混响,并能获得较高的信号处理增益等。

  基于上述优点,参量阵在水下探测、水下通信等领域具有广泛的应用前景。例如,在国外,德国INN0-MAR公司生产的SES-96和SES-2000系列参量阵测深/浅底层剖面仪,目前广泛应用于浅海水下探测,其中SES-96低频的束角为±1.8°,穿透深度最大达50 m;在国内,中国科学院东海研究站研制成功的参量阵“堤防隐患监测声纳”,可以对江河湖底和海底沉积层进行探测识别或对堤防损毁程度进行探测评估。另外,美国技术公司开发的参量扬声器专利产品——极超音速扬声器系统(Hypersonic Sound System,HSS),实现了声音在空气中的定向传播。

  但是,目前参量阵技术并不成熟,没有形成统一的国际标准或行业规范。本文旨在对声参量阵在空气中的应用做一些初步的探索和研究,为声参量阵技术应用于水声探测做准备。

  1 声参量阵理论及换能器阵设计

  1.1 声参量阵理论

  假设两个高频初始声波信号的频率分别为ω1和ω2(不妨设ω1>ω2),信号在传播中由于介质的非线性效应而形成差频信号(ω1-ω2)、和频信号(ω1+ω2)、倍频信号(2ω1和2ω2)以及原信号(ω1和ω2),可表述如下:

  式中:ei(i=1,2,…,6)为无量纲参量。

  由于高频初始声波信号ω1和ω2可以做得很接近,差频信号(ω1-ω2)的频率很低,该差频信号具有很强的沉积层穿透力,可以用来探测海底浅部底层结构,而反射的主频信号则可以用于精确的水深测量。另外,原波频率较高,换能器可做得很小,这不但可以减小发射器的体积,而且还可探测较小物体。产生的差频信号强度较原波稍高,衰减较慢,并与高频时的波束角非常接近,且没有旁瓣,因此其波束指向性好,具有较高的分辨率。同时可控的差频声波信号可以承载更多的沉积层信息,以便对埋入沉积层的目标进行分类识别。

你没有登陆,无法阅读全文内容

您需要 登录 才可以查看,没有帐号? 立即注册

标签: LabVIEW
点赞   收藏

相关文章

发表评论

请自觉遵守互联网相关的政策法规,严禁发布色情、暴力、反动的言论。

用户名: 验证码: 看不清?点击更换

最新评论