基于颜色和边缘信息的交通标志检测
0 引言
据世界卫生组织发布的“道路安全全球现状报告”指出,全球每年高达127万人死于交通事故,而随着我国城市化的进展以及汽车的普及,公路交通的安全以及运输效率问题变得日益突出。智能交通系统(Intelligent Transportation System,ITS)已经成为国内外广泛研究的课题。如何实时、准确地实现复杂场景下的道路交通标志识别(Trafic Sign Recognition,TSR)成为ITS的热点与难点问题,交通标志的自动检测是对交通标志进行正确识别的前提,现有的交通标志检测大多基于标志图,针对实景图的研究较少,且大多数算法较为复杂,实时性难以得到保障。同周围环境相比,每种交通标志都具有颜色和几何形状的特殊性,本文利用这个特点,采用基于颜色信息和基于边缘特征相结合的方法实现标志的检测。首先,根据交通标志的颜色特征,在RGB模型下对交通标志场景图进行粗分割,得到感兴趣区域,然后采用Can-ny算子提取轮廓,再根据交通标志的几何特征,利用最小二乘法对轮廓进行椭圆拟合,检测出交通标志。对于禁令标志、警告标志和指示标志三种常见的交通标志,本文选择红色圆形的禁令标志进行实验分析。
1 基于颜色的交通标志粗分割
颜色分割的任务是将某种特定颜色的像素提取出来,其分割的结果进行一系列的处理后用于下一步交通标志的几何形状分析,从而达到交通标志检测的结果。在实际应用中,交通标志是通过车载摄像头在行驶过程中拍摄所获得的。一般为RGB模型,得到的是直接具有R,G,B特征的影像,相比较HSI模型,由于RGB三分量之间有很高的相关性,使得RGB三分量容易受光照的影响,但不需要进行颜色模型之间的转化,使得计算量大大地减少,而满足交通标志检测的实时性要求。根据RGB颜色模型的特点,通过大量的实验发现,对三分量进行简单的组合运算,再进行阈值分割,不仅能快速有效地得到感兴趣区域,还能使得分割的效果受光照的影响减小,从而得出一种基于RGB模型的快速交通标志粗分割算法,将满足(1)R—B>25,(2)2G175。其中条件(1),条件(2)为判断影像中像素主要为红色,条件(3)表示整个影像中整体颜色的明暗度。通过大量实验,将条件(1)的参数选为25,条件(3)中的参数选为175,对于满足上述条件的像素同时置为0,这样影像中红色区域都为白色,将不符合红色禁令标志颜色特征的区域从背景中除去,从而得到感兴趣区域,有利于下一步交通标志的检测。分割结果如图1所示,从图中可以看到,即使在光照条件不好的情况下,算法依然能得到较好的分割结果。
相关文章
- 2024-08-06接触测量中测头半径误差的修正
- 2024-07-22彩色CCD摄像机三基色代表波长的试验研究
- 2023-01-0412Cr1MoVg短期高温冲击断裂有限元分析
- 2024-09-19多波长辐射温度计最少波长数确定的理论依据
- 2023-08-11表面三维形貌参数及其评定
请自觉遵守互联网相关的政策法规,严禁发布色情、暴力、反动的言论。