基于数字信号处理器的IGBT驱动电路可靠性分析与设计
0 引言
在高可靠性等级的设备中,必须保证半导体器件的失效率标称值在10到100个FIT(1FIT=10-9/h)之间。要实现这样的可靠性,按给定特性使用模块极为重要。IGBT作为电力电子系统中最具应用前景的功率半导体器件之一,其耐用强度和使用寿命直接关系到整个系统的可靠性。就IGBT器件本身而言,可靠的驱动电路设计直接关系到其使用寿命。同时,随着微电子技术及半导体集成技术的飞速发展,数字信号处理器正逐步成为电力电子技术及运动控制领域应用越来越广的微控制器。设计可靠的驱动方案已成为以数字信号处理器为核心的运动控制系统长期可靠运行的关键环节之一。本文通过分析IGBT对可靠性驱动的要求,及几种变频调速中常用数字信号处理器的驱动能力,给出了一种可靠的驱动电路方案,该方案在实践中具有较好的应用前景。
1 IGBT特性及驱动电路可靠性设计要求
1.1 IGBT特性
IGBT是电压驱动的少子导电器件,是将MOSFET的高速易驱动,安全工作区宽同双极性器件低饱和压降结合的产物。图1给出了IGBT的等效电路,它具有以下特点:
——高的输入阻抗,使之可采用通用低成本的驱动线路;
——高速开关特性;
——导通状态的损耗低。
图1 IGBT等效电路
1.1.1 IGBT的额定值
IGBT能承受的电流、电压、功率等的最大允许值一般被定义为最大额定值。线路设计时,能否正确地理解和识别最大额定值,对IGBT可靠工作以及最终使用寿命特别重要。
1.1.2 短路电流特性
IGBT的短路电流可达额定电流10倍以上,短路电流值由IGBT栅极电压和跨导来决定。正确地控制IGBT的短路电流是IGBT可靠工作的必要保障。
1.1.3 感性负载的关断特性
在运动控制系统中,感性负载是常见的负载,当IGBT关断时,加在其上的电压将瞬时由几V上升到电源电压(在此期间通态电流保持不变),产生很大的dv/dt,这将严重地威胁到IGBT长期工作的可靠性。在电路设计中,通过在栅极驱动电路中增加电阻值可限制和降低关断时的dv/dt。
1.1.4 最大栅极发射极电压(VGE)
栅极电压是由栅极氧化层的厚度和特性所决定的。栅极对发射极的击穿电压一般为80V,为了保证安全,栅极电压通常限制在20V以下。
1.1.5 栅极输入电容
IGBT的输入电容特性直接影响到栅极驱动电路的可靠设计。IGBT作为一种少子导电器件,开关特性受少子的注入和复合以及栅极驱动条件的影响较大。在实践中,考虑到密勒效应,栅极驱动电路的驱动能力应大于手册中的2~3倍。
相关文章
- 2024-06-06LBOⅠ类临界相位匹配内腔和频555nm激光器
- 2024-07-24基于激光测距的大尺寸测量应用研究
- 2022-07-29基于现场仪表通讯的集散控制系统在烧结自动配料中的应用
- 2022-12-29采用PLC解决车辆分散驱动的同步控制问题
- 2024-03-01钢圈反射式光栅信号的补偿
请自觉遵守互联网相关的政策法规,严禁发布色情、暴力、反动的言论。