开关电源功率因数校正的DSP实现
1 引言
随着对高功率因数的变换器的需求不断增长,功率因数为1(unity Power factor)的电源供给越来越受到欢迎。在计算机或其它一些设备上,电源要求鲁棒性好、可靠、抗干扰能力强。而数字控制正提供了这方面的保障。
和传统模拟控制器相比,数字控制器具有以下这些优点:可以实现非线性的精细的控制算法,减少元器件数量,提高可靠性,不易老化,很小的控制偏差和热漂移。但同时,数字控制也意味着相对较高的费用和一定的控制带宽限制。过去,这些不足在很大程度上限制了数字控制在电源方面的应用。而现在,由于高效廉价的DSP的出现,数字控制不仅在交流驱动(ACdrives)和三相变换方面应用越来越广泛,而且在DC/DC变换领域也成为一种可行方案。本文将讨论DSP在单相开关电源功率因数校正方面的应用。
2 传统的模拟PFC电路简介
模拟PFC电路已经有了多年的应用,并且推出了一些商用的IC芯片,例如TI公司的UC3854等。
图1所示的就是功率因数校正的基本原理。PFC控制电路主要由电压误差放大器、电流误差放大器、乘法器和PWM驱动组成。控制的目标是使输入电流紧跟输入电压的变化,并使输出纹波尽可能地小。为了使输入电流跟随输入电压变化,控制电路对输入电压采样,采样信号作为乘法器的一个输入;为了保持输入电压稳定,输出电压经分压、比较和误差放大后作为乘法器的另一个输入,于是乘法器的输出具有输入电压的形状,且其幅度由输出电压控制。乘法器的输出作为输入电流的基准信号。采样输入电流,和这个基准比较,经误差放大后输入PWM比较器,PWM输出驱动波形控制变换器工作。闭环反馈控制的结果使输入电流的平均值与输入电压成正比,从而达到较高的功率因数。
图1 功率因数校正原理
PFC变换器的输出中含有二次谐波的纹波电压,
|ΔVo(t)|=(1)
这与变换器的拓扑结构和控制方式无关。如果要通过电压回路消除输出电压的纹波,就必然会损坏输入电流的波形,从而降低功率因数。而引入模拟滤波电路的话,又会引入不良的相位影响,而且由于模拟元件参数离散性大、易老化和热漂移等因素,很难实现精确的滤波。所以对于50Hz的工频输入,电压回路的带宽一般都只选在10~20Hz。
3 数字控制的PFC模型
如图2所示是Boost电路PFC的数字化模型。该模型的控制原理与前面所述的模拟电路是一致的。区别就是用两个数字的比例积分控制器(PI)Ki、Kv代替了原来的两个误差放大器。另外,在电压PI的输出端加了一个陷波滤波器,滤波频率为100Hz。与模拟滤波器相比,数字滤波可以很好地减少100Hz的谐波成分,同时引入的相位影响却要小得多。
相关文章
- 2022-06-27LED全彩灯光控制系统的实现
- 2024-08-296A02-T4铝合金板材表面树叶状黑斑缺陷分析
- 2024-02-26基于PLC的油品运动粘度测量系统
- 2024-01-08电子皮带秤计量及其监控系统的应用
- 2022-05-25浮选技术在含油污水处理中的应用进展
请自觉遵守互联网相关的政策法规,严禁发布色情、暴力、反动的言论。