基于神经网络技术的虚拟传感器温度补偿系统
0 引言
固态压阻式传感器是利用半导体的压阻效应所制成的传感器,其灵敏度将随温度的变化而变化,导致输入输出特性存在非线性。表现为被测的目标参量为零或保持恒定值时,改变工作环境温度,则传感器的零点或输出电压值均发生变化,这将给测量目标参量带来误差。传统的温度补偿方法有:恒流源供电法、电压正反馈补偿法、热敏电阻补偿法,但以上三种方法只能是灵敏度温度系数接近于零,很难在较宽的温度范围内得到完全补偿。因此,本文将人工神经网络和虚拟仪器相结合,设计了压阻式压力传感器的温度补偿系统,消除了温度影响同时也进行了零点及非线性补偿。
1 补偿系统的工作原理
补偿系统由传感器和温度补偿器两部分组成。传感器部分包括主传感器与温度监测传感器:主传感器为固态压阻式传感器,它与数据采集卡(DAQ)组成测试系统;对主传感器进行温度补偿要引入温度监测传感器,它起到监测工作环境温度的作用;温度补偿器是一个软件模块,补偿系统要对上述2个传感器进行数据融合,因此温度补偿软件模块也是一个多传感器数据融合系统。
1.1 BP神经网络的学习算法
对压阻式压力传感器进行温度补偿,可以在一定的工作温度范围内选定。表1列出了在20℃~65℃间6个温度状态的静态标定数据,同时在选用的压阻式压力传感器量程范围内选了5个标定值,因此获得了30个标定数据。其中,20个数据对网络进行训练,10个数据作为网络校验样本数据。
从表1的标定值可以看出,在输入压力值不变的情况下,工作环境温度改变,压力传感器的输出电压值也随之改变。
1.2 样本数据归一化处理
神经网络所处理的数据应是在-1和+1间的归一化数据,因此采用如下公式进行传感器输出数据的归一化处理:
式中,为第m个样本神经网络的输入、输出归一化值;Xim和Om为第m个样本的输入输出标定值,本文中i=1,2;Ximax和Ximin为第i个传感器输出最大、最小标定值。
1.3 神经网络的结构与训练
BP神经网络结构:
基于该系统采用3层BP神经网络,输入层i=1,2,共有2个节点,分别输入压阻传感器和温度传感器的输出电压值Up和Ut。隐层节点数j=1,2,…,l可在3~30范围内选择,视补偿效果而定。输出层节点k=1,为一个节点,表示输出压力值Pt。
温度补偿系统BP神经网络Ot和分别为归一化的网络输出的计算值与标定值;m为样本序号;M为样本总数;训练的样本数越多,网络的计算结果Ot的偏差越小。根据标定实验提供的学习样本,采用BP算法学习修正网络的权值和阈值,直到满足精度要求为止。训练后的神经网络仍不能使用,必须使用附加样本进行性能验证,如不能满足要求,就需要重新训练网络,所以神经网络的训练是一个反复的过程。
相关文章
- 2021-12-21基于Au1200的多媒体播放终端设计
- 2023-12-09导热系数测量系统的数值模拟
- 2023-10-21基于遗传算法和分割逼近法精确计算复杂曲面轮廓度误差
- 2023-05-22一种新的活塞位移型液体流量校准装置
- 2023-07-29用三维噪声模型对扫描型热像仪测试与分析
请自觉遵守互联网相关的政策法规,严禁发布色情、暴力、反动的言论。