一种带蓄能器的液力缓速器研究
分析了带蓄能器装置的液力缓速器的工作原理,通过采集整车试验数据,验证了带蓄能器装置的液力缓速器响应时间更快,明显提升了缓速器的使用性能。同时也分析了影响液力缓速器制动响应时间的因素,为液力缓速器的设计开发提供相应的理论借鉴。
重型车辆用液力缓速器制动力矩性能研究
以满足某型车辆下坡缓速制动为目的,通过车辆受力分析和匹配计算,得到液力缓速器在不同挡位以及不同坡度下所需制动力矩。以Fluent软件为平台,对液力缓速器内部流场进行数值模拟,在不同转子转速下基于流场数值解对制动力矩进行求解;开展液力缓速器台架性能试验,将试验数据与仿真结果进行力矩值对比分析。结果表明:在相同坡度,匀速下坡所需制动力矩随挡位的升高而增加;在同一挡位,所需制动力矩随坡度增大而增加;随转子转速升高,缓速器制动力矩
液力缓速器气动控制特性研究
液力缓速器制动力矩由工作腔充液率和输入轴转速共同决定,利用气动电磁比例阀控制缓速器工作腔充液率是缓速器制动力矩控制的一种模式.对电磁比例阀的结构和工作特性进行了研究,建立了电磁比例阀的AMESim仿真模型,设计了电磁比例阀性能试验,仿真与试验结果呈现较好的一致性,仿真模型能够预测不同阶跃输入信号下该比例阀的压力响应特性.
液力缓速器三维瞬态流场大涡模拟及特性计算
为深入了解液力缓速器内部复杂的三维流动,采用大涡模拟和多可动区域计算的滑动网格法,利用FLUENT软件对液力缓速器全充液工况内部三维瞬态流场进行数值模拟。对计算得到的三维流场分布特性进行深入研究,分析流动现象成因,为提高液力缓速器性能奠定理论基础。基于流场数值解对制动扭矩进行了计算,将计算结果与实验结果进行对比分析,二者误差在5%以内,说明采用的数值模拟方法是准确有效的。
新型液力缓速器结构设计与性能研究
使用液力缓速器能够较好的避免重型车辆长下坡制动工况下行车制动器的热衰退现象。从简化现用液力缓速器结构、提高产品制造工艺性出发基于流体输送机械工作原理提出了一种新型液力缓速器结构并进行了样机设计。通过对原理样机试验测试初步验证了新型液力缓速器结构方案可行。通过理论计算和应用CFD工具软件针对新型液力缓速器不同叶型的性能进行数值模拟得出了缓速器结构优化设计方向能够对国内液力缓速器技术研究与产品正向开发提供参考。
基于结构参数相关性的液力缓速器优化设计
以液力缓速器为研究对象通过计算流体动力学(CFD)数值模拟方法借助滑动网格技术对缓速器内部非稳态不可压缩流动进行数值计算。分析了不同叶片前倾角下缓速器内部流场的特性和制动转矩。在最优前倾角的基础上基于各结构参数之间的相关性分别研究了不同流道腔型、叶片数对液力缓速器性能的影响。当叶片倾角为40°截面形状为扁圆形转子外环叶片数为40内环叶片数为20定子叶片数为43时模型制动转矩最大制动效果最好。
液力缓速器定转子工作腔流场数值模拟
以某型液力缓速器的三维几何模型为基础,基于CFD计算软件平台,采用八面体自适应网格技术,用SIMPLE算法对该定转子工作腔在一定进油压力工况下的三维内流场进行了全流道式数值模拟分析,得到了在该工况下工作腔内流场的压力和速度矢量分布以及制动扭矩估算值,并与台架试验结果相似,对液力缓速器样机的设计具有较高的参考价值。
液力缓速器制动力控制阀设计
液力缓速器体积小、安装方便在车辆中的使用越来越广泛。针对AT500自动变速箱内部集成的液力缓速器对其制动力控制阀进行优化设计。采用流体仿真软件Flow Simulation对控制阀内部流场进行仿真通过改变阀芯台肩处的过渡结构显著减小控制阀阀芯移动时产生的液动力使得阀芯在一定先导控制压力下能够稳定停止在任意过渡位置为制动力的精确控制提供了条件。
汽车液力缓速器恒速控制策略仿真研究
加装液力缓速器汽车恒速下坡控制是一个时变、非线性控制过程。为使汽车恒速下坡控制满足无静差、响应快的要求通过分析液力缓速器控制特性与模糊控制特点提出采用分级变论域模糊控制策略实现汽车恒速下坡控制。采用MATLAB/Simulink建立重型汽车下坡动力学模型和分级变论域模糊控制器对汽车恒速下坡控制进行仿真分析并与常规模糊控制算法控制性能进行比较。研究结果表明:分级变论域模糊控制算法能满足汽车恒速下坡控制性能要求控制效果明显优于常规模糊控制。
汽车液力缓速器的原理及应用
简单介绍缓速器的发展历史,重点叙述液力缓速器的基本结构、工作原理和控制方式,并对液力缓速器的制动效果做了初步的分析。