碧波液压网 欢迎你,游客。 登录 注册

带有支座松动故障的离心泵叶轮转子分岔特性分析

版权信息:站内文章仅供学习与参考,如触及到您的版权信息,请与本站联系。

  

  1 引言

  轴承支座与基础之间的松动是转子系统中的常见故障[1-4]。研究发现,当离心式水泵涡动时,发生在离心泵流场中的流固耦合作用将会在离心泵转子的叶轮上产生一个横向流体激振力[5]94-95,该流体力会对离心泵转子的非线性动力学行为产生深刻影响[6]。本文以离心式水泵转子为研究对象,综合考虑转子所受横向流体激振力、转子滑动轴承中非线性油膜力的影响,对带有支座松动故障的离心泵转子的非线性动力学分岔特性进行研究。

  2 横向流体激振力

  作用在离心泵叶轮转子上的横向流体激振力主要源于叶轮与泵壳之间流体动压力的相互作用[5]94-95。当叶轮转子只是绕轴自转而无涡动发生时,作用在叶轮周围的流体压力是几何对称的,此时并没有横向流体力激振力产生;当叶轮转子在绕轴自转的同时又有涡动产生时(如图1所示,转子自转速度为ω,涡动速度为Ω,二者同向称为正向涡动,反向则成为反向涡动),作用在叶轮周围的流体压力不再几何对称,离心叶轮转子上的横向流体激振力也随之产生[5]94-95。该横向力还可以进一步分解为沿涡动半径向外的径向力Fr和垂直于径向力方向的周 向力Ft(如图2所示)。关于横向流体激振力的数值计算,目前有奇点法、流线曲率法、准正交面法等几种算法[7],最终都把流体激振力表示成涡动频率(Ω/ω)的多项式。但是由于计算过程中将流体理想化的作法以及算法自身可靠性、计算精度、稳定性等方面的原因,使得横向流体激振力的计算结果与试验结果总存在一定程度的差距[8]。

  

  为使振动模型所受的流体激振与事实相符,本文采用California Institute of Technology的实验数据(如图3所示)[9],并拟合成以下多项式作为横向激振力数学表达式

  

  

  

3 流体横向激振力和碰摩力作用下的离心叶

  轮转子的运动方程将离心泵转子简化为带有一端轴承支座松动的简化转子系统模型,运用等效质量法和质心不变原则,可把离散的离心叶轮转化为刚性圆盘,转轴的两端以滑动轴承支撑,如图4所示。图中,O1为未松动端轴颈中心,O2为圆盘中心,O21为圆盘质心,O3为松动端轴颈中心,m1为轴颈集中质量,m2为圆盘质量,m3为轴承支座的等效集中质量,ks为轴承座与基础之间的等效刚度,k为转轴刚度,c1为转子在轴承处的阻尼系数,c2为转子圆盘阻尼系数,cs为轴承座与基础之间的等效阻尼系数,Fx1、Fy1分别为未松动段滑动轴承作用在轴颈上的非线性油膜力,Fx3、Fy3分别为松动段滑动轴承作用在轴颈上的非线性油膜力,b为圆盘质量偏心。另外,设轴承半径为R,润滑油黏性系数为μ,轴承长度为L,轴承半径间隙为c,轴承座与基础之间的最大间隙为δ1,P为转子质量的一半,设未松动端轴心在水平和垂直方向上的位移为x1、y1,圆盘中心水平和垂直方向上的位移为x2、y2,松动端轴心在水平和垂直方向上的位移为x3、y3,轴承支座在垂直方向上的位移为y4(不考虑水平位移)。

你没有登陆,无法阅读全文内容

您需要 登录 才可以查看,没有帐号? 立即注册

标签:
点赞   收藏

相关文章

发表评论

请自觉遵守互联网相关的政策法规,严禁发布色情、暴力、反动的言论。

用户名: 验证码:

最新评论