视频跟踪算法在Davinci SOC上的实现与优化
引言
目标跟踪作为计算机视觉的一个极具挑战性的研究任务,已被广泛的应用在人机交互、智能监控、医学图像处理等领域中。目标跟踪的本质是在图像序列中识别出目标的同时对其进行精确定位。为了克服噪声、遮挡、背景的改变等对目标识别带来的困难,出现了很多的跟踪算法。
因为目标跟踪算法需要处理的数据量大、运算复杂,需要性能强大的处理器才能实时处理。我们选用TI推出的最新产品TMS320DM6446实现算法。TMS320DM6446是一款高度集成的片上系统,集成了可以运行频率高达594MHz的C64x+ DSP核和297MHz的ARM926处理器核。另外它还集成了数字视频所需的许多外部组件,如视频加速器,网络外设及高速外部存储接口。本设计充分利用DM6446的强大运算能力,在DSP内核上实时运行目标跟踪算法。 设计还在ARM处理器上执行多线程应用程序,负责视频采集,显示,网络通信,外围器件控制等工作。
算法介绍
本系统实现的视频跟踪算法可参考文献[1]-[5],整个算法分为基本算法和改进算法两部分。本算法是一种基于模板匹配技术的跟踪算法,即在手工选定或自动选定了待跟踪目标后,提取目标的外观信息作为模板,在后续的视频序列中,将候选图像区域与目标模板进行匹配,将最相似的图像区域作为运动目标当前的位置。在本文中,采用结构相似度,即“归一化互相关系数”作为候选区域与目标模板相似程度的度量标准,其计算公式如下所示:
上式中,f(m,n)和g(m,n)分别为目标模板和候选区域的灰度值矩阵,尺寸为MxN。uf和ug分别为目标模板和候选区域的灰度平均值,然后再求出f(m,n)和g(m,n)的协方差、f(m,n)的方差、g(m,n)的方差后,求出归一化互相关系数。式(1)通过从灰度值矩阵中减去灰度均值,有效地消除了光照给跟踪结果带来的影响。而对于匹配图像区域的搜索,为了达到减少匹配次数从而降低计算量的目的,我们借鉴了视频压缩领域中的三步搜索法(Three Step Search, TSS) 作为最匹配点的搜索算法[2]。
为了增加模板匹配视频目标跟踪算法的鲁棒性,我们在基本算法的基础上实现了改进算法的部分。改进算法具有自适应遮挡处理与模板漂移抑制的能力,能够很好地解决前面提到模板匹配的视频目标跟踪算法需要解决的难题。具体来说,主要有如下四点改进:(1) 抑制漂移的带掩蔽卡尔曼外观滤波算法(Drift-Inhibitive Masked Kalman Appearance Filter, DIMKAF ) [1][3][4] ;(2) 内容自适应渐进式遮挡分析算法(Content-Adaptive Progressive Occlusion Analysis, CAPOA)[1][5];(3) 可变掩蔽模板匹配算法(Variant-Mask Template Matching, VMTM)[1][5];(4) 局部最优匹配鉴定算法(Local Best Match Authentication, LBMA)[1]。 改进后整个算法的流程图如下所示:
相关文章
- 2022-12-05新型128导大脑磁刺激仪的研制
- 2022-08-30利用F-P干涉仪测量固体材料线膨胀系数
- 2022-01-09嵌入式实时操作系统设计及应用
- 2024-02-06高频电刀主变换器工作原理及故障分析
- 2023-12-13太阳能半导体制冷装置设计与性能分析
请自觉遵守互联网相关的政策法规,严禁发布色情、暴力、反动的言论。