基于AVR和FPGA高精度数字式移相发生器的设计
1 引言
语音编码算法利用语音信号的冗余信息及某些人耳不敏感的信息,可以在低比特率上获得较高质量的重建语音,压缩编码一直是通信中的关键技术。语音信号研究者们一直在寻求一种在保持语音质量不显著下降的情况下使语音信号的编码比特率最小的方法,特别地,低比特率语音编码体制(比特率在4.8 kb/s以下)因其广泛的需求而得到研究者的重视。
语音编码器的性能常常用比特率、延时、复杂度和质量4个属性来进行衡量,因此,在分析语音编码器的性能时,主要应该考虑这些属性。值得注意的是,这些属性之间不是孤立的,而是相互紧密联系的,例如,低比特率的编码器一般比高比特率的编码器有更大的延时、更高的算法复杂度和较低的语音质量。因此在对各种编码算法进行取舍时,应根据实际应用环境,在这些属性之间进行权衡。
共振峰参数编码算法在低码率的音频编码中应用越来越广泛。与基于时域波形的压缩算法相比,他在传输的过程中只需要传输构造信号所用的基频和共振峰参数,因此可以大大地降低传输的码率,实现低码率下的多媒体通信。而且,基于共振峰参数的算法无须严格限制信号的结构,他可以灵活地描述音频信号的特征。这一灵活性决定了基于共振峰参数的算法,可以满足对音频信号进行方便访问和控制的需要。
2 基频及共振峰提取
基频与共振峰参数的准确提取对于共振峰编码算法质量起着至关重要的作用。在本课题中采用改进的双重傅里叶变换算法进行语音参数提取。本课题分析算法所需要的语音频谱是由机语公司的SA-0505语谱仪分析得到。机语公司的SA-0505频谱分析仪最高分辨精度为频率分辨精度为5 Hz,时间分辨精度为5 ms。分析结果是各频率分量的幅值函数,不包含相位信息。由于语音信号中相位信息不影响语音分辨,所以在此基础上的进一步工作有很大意义。
在实际的语音参数提取过程中,首先应用机语语谱仪分析语音信号,得到语音的时频分析图谱。如图l所示。
对各时刻的频谱序列进行傅里叶变换,图2所示时刻的频谱序列的傅里叶变换如图3所示。
从图2中可以看出,由于实际的语音是准周期信号和实际上是短时间信号的频率分析,其频谱序列不是周期性冲激函数序列的采样,而是近似三角脉冲的采样,所以其傅里叶变换的幅度谱呈现高频衰减性质。从图3中可以观察到频谱序列的幅度谱是周期信号和高频衰减信号的乘积。实际语音分析过程中各时刻频谱序列的傅里叶变换后衰减幅度差异很大,低频部分有时会出现分支脉冲的幅值大于下一个周期主脉冲的幅值,这对信号周期地分辨产生一定的干扰,而无法准确估计基频值。所以本文在确定基频时利用高频部分衰减幅度差异较小的特点,分析其周期特性并用来计算语音基频。
相关文章
- 2024-03-08压力表校准中测量不确定度实例评定的探讨
- 2023-03-21基于单总线温度传感器的多点测温系统设计
- 2023-11-28轻薄型回收金属破碎试验机的设计研究
- 2023-08-09微机控制电子万能试验机在《材料力学》开放性实验中的应用
- 2024-11-21IC卡门禁系统中的无线通信加密技术
请自觉遵守互联网相关的政策法规,严禁发布色情、暴力、反动的言论。