碧波液压网 欢迎你,游客。 登录 注册

FPGA控制下面阵CCD时序发生器设计及硬件实现

版权信息:站内文章仅供学习与参考,如触及到您的版权信息,请与本站联系。

  

  

  CCD是利用光电转换原理把图像信号转换为电信号,即把一幅按空间域分布的光学图像,转换成为一串按时间域分布的视频信号的半导体元器件。因其具有体积小、重量轻、功耗低、灵敏度高、工作稳定、寿命长、自扫描和便于同计算机接口等优点,被广泛应用于图像传感和非接触式测量。CCD应用的关键问题之一,是驱动时序发生器设计。它直接关系到CCD的信号处理能力、转换效率和信噪比等光电转换特征。针对Sony公司面阵CCD ICX098BQ的工作原理和驱动时序的要求,给出了驱动时序发生器的具体设计,使用VHDL语言对驱动时序发生器的实现方案进行了硬件描述,采用Quartus II 8.0对所设计的时序发生器进行了功能仿真,在该驱动时序发生器作用下,对Sony公司ICX98BQ面阵CCD产生的输出信号波形进行了验证。

  1 CCD成像系统

  CCD成像系统如图1所示,目标通过光学系统成像在CCD上。在偏置电压和驱动脉冲的作用下,CCD完成光电荷的转移、存贮等工作,将光信号转换成具有直流分量的模拟电信号。形成的模拟电信号经过信号处理器,进行除噪、增益和模数转换后,将数据传输到显示器或计算机上,进行后期处理。在上述系统中,CCD信号采集模块是关键。对此,主要对CCD信号采集进行分析。

  2 面阵CCD图像传感器驱动时序分析

  2.1 Sony ICX098BQ型面阵CCD

  ICX098BQ是Sony公司生产的一款1/4英寸(0.635 cm),具有可变电子快门的行间转移型彩色面阵CCD芯片,芯片结构如图2所示。该芯片灵敏度高,暗电流小,具有较好的抗弥散功能。

  ICX098BQ芯片由感光阵列、垂直移位寄存器、水平移位寄存器和输出放大器4个主要部分组成。要使该CCD芯片正常工作,需要8路驱动时钟来驱动。分别为4路垂直转移时钟Vφ1、Vφ2A、Vφ2B、Vφ3,控制垂直移位寄存器中的电荷信号向水平移位寄存器移动,其中当Vφ2A和Vφ2B为+15 V高电平时作为读出转移时钟,将感光阵列的信号电荷转移到垂直移位寄存器中;两路水平转移时钟Hφ1、Hφ2,控制水平移位寄存器中的电荷信号向前迁移;复位门时钟RG,使水平移位寄存器中的电荷信号顺利输出,其频率为10 MHz,直接决定CCD电荷信号的水平输出频率并控制曝光量的电子快门时钟φSUB。

  上述驱动信号均由CCD驱动时序发生器产生。由于面阵CCD的驱动信号数量多,相位要求严格,且需要多种电压的驱动,因此进行时序分析并设计出高精度的驱动时序电路是问题的关键。

  2.2 驱动时序分析

  ICX098BQ芯片的一个工作周期分为4个阶段:感光阶段、垂直转移阶段、帧转移阶段和水平读出阶段。感光阶段进行光电转换,完成感光阵列的电荷积累。垂直转移阶段实现感光阵列积累的电荷包读出转移到相邻的垂直移位寄存器。帧转移和水平读出阶段包括电荷包从垂直移位寄存器向水平移位寄存器并行转移以及从水平移位寄存器向输出放大器的串行输出。

你没有登陆,无法阅读全文内容

您需要 登录 才可以查看,没有帐号? 立即注册

标签:
点赞   收藏

相关文章

发表评论

请自觉遵守互联网相关的政策法规,严禁发布色情、暴力、反动的言论。

用户名: 验证码:

最新评论