低压CPLDEPM7512A的混合电压系统设计
引 言
随着微电子技术的飞速发展,体积更小、功耗更低、性能更佳的低压芯片不断涌现。I/O电平逻辑向3.3V、 2.5V、1.8V,甚至更低的方向发展。但数十年来,由于5V电源的器件一直占据比较重要的市场,在系统设计中它们经常共存在一块电路板中,因此在设计它们的过程中,就不可避免地要碰到不同电压电平的接口问题。
1 EPM7512A简述
EMP7512A是Altera公司推出的MAX7000A 系列的CPLD(Complex Programmable Logic Device);采用CMOS EEPROM工艺,传输延时仅为3.5ns,可实现频率高达200MHz的计数器;内部具有丰富的资源——512个触发器,1万个用户可编程门;为了比较适合混合电压系统,提供了2.5V、3.3V电压的内核,通过配置,输入引脚可以工作兼容2.5V/3.3V/5V/逻辑电平,输出可以配置为 2.5V/3.3V逻辑电平输出。EPM7512A同时还提供了JTAG接口,可进行ISP编程,极大方便了用户。
2 电源设计
在本系统中,外界提供的电源为±12V和+5V,而EPM7512A的工作电压需接3.3V,所以首先要解决好电源的问题。以下是几种解决方案。
(1)采用低压差线性稳压芯片
线性稳压芯片是一种最简单的电源转换芯片,基本上不需要外围元件。使用方便、成本低、纹波小、无电磁干扰。 但是传统的线性稳压器,如78xx系列都要求输入电压要比输出电压高2V~3V以上,否则不能正常工作,所以78xx系列已经不能够满足3.3V电源设计的要求。 面对低电压电源的需求,许多电源芯片公司推出了低压差线性稳压器LDO(Low Dropout Regulator)。这种电源芯片的压差只有1.3V ~ 0.2V,可以实现5V转3.3V/2.5V,3.3V转2.5V/1.8V等要求。
(2)设计开关电源
开关电源也是实现电源转换的一种方法,且效率很高,但设计要比使用线性稳压器复杂得多。不过对于大电流高功率的设计,建议采用开关电源。现在开关电源里面的同步整流技术可以很好地解决低压、大电流的问题。
(3)电阻分压
这种方法简单、成本低,但是分压输出受负载大小影响,不推荐在低压系统中使用。综合对比上面几种方案,选用了TI公司的LDO芯片TPS7333QD,负载能力500mA,符合系统功耗要求。
3 逻辑接口设计
(1)各种电平的转换标准
EMP7512A的供电电压为3.3V,当VCCINT接3.3V时,输入口的逻辑电平范围为-2V~5.75V。输出口的逻辑电平范围为0V~VCCIO。VCCIO可以接2.5V或者3.3V。在进行CPLD系统设计时,除了CPLD本身外,还有很多外围的模块和芯片,比如Flash、D/A、A/D等。这些可归成两类——驱动CPLD的5V电平和被CPLD驱动的5V电平芯片。因此就存在一个如何将低压CPLD与这些芯片或模块可靠接口的问题。表1所列为5V CMOS、5V TTL和3.3V电平的转换标准。其中,VOH表示输出高电平的最低电压,VIH表示输入高电平的最低电压,VIL表示输入低电平的最高电压,VOL表示输出低电平的最高电压。从表1中可以看出,5V TTL和3.3V的转换标准是一样的,而5V CMOS的转换标准是不同的。因此,在将3.3V系统与5V系统接口时,必须考虑到两者的不同。
相关文章
- 2023-12-14浅谈减压阀的结构设计
- 2023-03-09铜氨液流量测量的改进
- 2023-07-20光栅投影轮廓测量的系统标定技术
- 2023-11-19轴类零件的高精度形状误差检测方法研究
- 2023-12-10吸收式制冷循环系统的热力学分析
请自觉遵守互联网相关的政策法规,严禁发布色情、暴力、反动的言论。