碧波液压网 欢迎你,游客。 登录 注册

一款新颖的带隙基准电压源设计

版权信息:站内文章仅供学习与参考,如触及到您的版权信息,请与本站联系。

  电压基准是芯片设计中一个至关重要的组成单元,它直接影响着整个电子产品的性能。高精度是当今集成电路发展的特点之一,随着集成电路以摩尔定律的发展,人们对电路指标的要求也日趋提高。因此,高精度、高性能的基准源对于集成电路芯片是必不可少的。本文设计了一款高性能的基准电路,具有较小的温度系数,同时在2.3~6.5V的电源电压范围内具有较低的功耗和较高的电源电压抑制特性,适用于各类对精度要求较高且功耗低的集成电路芯片。

  1 基准工作的基本原理

  图1为典型的与温度无关的带隙基准电路架构图。它的原理就是利用三极管基极-发射极电压△VBE的负温度系数和两个三极管基极-发射极电压差值△VBE的正温度系数相抵消来产生零温度系数的基准电压。如图1所示,图中Mp1、Mp2为LDMOS管,VDD的大部分压降均落在Mp1、Mp2上,因此该电路可以承受较高的电源电压。若忽略三极管的基极电流,则有

  由式(1)~式(6)式可以得到

  其中,N=IS1/IS2为QN1和QN2的发射极面积之比。VBE2的温度系数为-1.5 mV/℃,VT的温度系数为+0.086 mV/℃,所以选择适当的N值和R2/R1的比值,就可以得到零温度系数的输出电压。另外,调节R4和R5的比值,可以得到期望的基准电压,且不会改变已调整好的零温度系数特性。

  2 新颖的带隙基准电路

  如图2即为所提出的基准电压电路。该电路由偏置、运算放大器、基准核心和基准启动4个部分构成。核心电路的原理如前文所述,下面对运放、启动作具体阐述。

  该电路的运放如图2所示,运放的主要作用是保证△VBE的精准性。然而运放的失调是一个主要的误差源。假设输入端的失调电压为VOS,经过计算可以得到

  这里的关键问题是失调电压被放大了(1+R2/R3)倍,在VREF中引入了误差。更重要的是VOS本身随温度变化,更增大了输出电压的温度系数。因此要尽量减少失调电压。而引起失调的因素有很多,如电阻间的不匹配,晶体管的不匹配,运放输入级晶体管阈值电压的不匹配,以及运放的有限增益等。这里主要通过提高运放的增益和精确的版图设计来改进。如图2所示,基准中采用了多级差分结构的运放来提高其增益,增大负反馈的深度,减小失调。然而,运放级数的增多会增加电路的功耗,因此设计运放的偏置电流为与电源无关的较小量,使其工作在饱和区边缘,这也使得电路具有较宽的电源电压范围。

  PSR是表征电源抑制能力的交流小信号参数,它的定义为输入电压的变化与输出基准电压的变化之比。在低频情况下,基准的PSR和运放的增益呈成正比。因此运放的环路增益越大,输出VREF对电源VDD变化的抑制性就越强。

你没有登陆,无法阅读全文内容

您需要 登录 才可以查看,没有帐号? 立即注册

标签:
点赞   收藏

相关文章

发表评论

请自觉遵守互联网相关的政策法规,严禁发布色情、暴力、反动的言论。

用户名: 验证码:

最新评论