移频电路分析系统设计
1 引 言
铁路信号的主要功能是保障行车安全和提高运输能力。为确保行车安全, 首先要确定接收信号的正确性、准确性和实时性, 因此须对相关的铁路信号进行检测与维护。当前我国的铁路干线上, 轨道移频信号主要有两种制式: 国产18信息自动闭塞电路信号和UM - 71无绝缘轨道电路信号。国产18信息自动闭塞电路信号, 上行线采用的中心频率是650H z和850H z两种载频频率交替配置, 下行线采用的中心频率是550H z和750H z两种载频频率交替配置, 其频偏为55H z; UM- 71无绝缘移频轨道电路, 上行线载频的中心频率是2000H z和2600H z, 下行线采用的中心频率是1700H z和2300Hz两种载频频率, 频偏为11Hz。移频发送设备发送信号的可靠性与准确性是安全行车的重要保障, 在监测系统中实时地对频率发送情况进行监测成为新的技术要求。笔者利用DSPIC 制作硬件平台, 采用时域及频域同时分析的方法, 对移频测试系统进行设计。
2 测试系统构成
本文测试的硬件平台框图如图1所示, 处理器使用m icrochip的16位dsPIC33FJ256GP710, 信号发送盒发出的移频信号, 电压在33~ 176V。信号要经过处理才能作为输入进入处理器自带的逐次逼近的12位A /D, 电压幅度降为0~ 3. 3V。处理器对数据进行分析处理后, 分析的结果通过LCD显示。测量系统构成如图1所示。
将移频信号的一路信号经过施密特触发器接入处理器的捕捉模块引脚, 另一路原始信号经过低通滤波器后接入A /D 引脚。利用捕捉模块从时域中可以得到频率, 经过校正之后, 便可以得到边频及载频; 经过A /D转换得到信号的离散值, 再经过快速傅立叶变换将时域信号转换到频域中, 利用移频信号特性从频域可以得到低频调制频率。
3 移频信号及测量原理
我国铁路中, 国产18信息移频自动闭塞系统和UM - 71无绝缘轨道电路均采用的是相位连续的移频键控信号, 其时域表达式为:
其中: Ao为移频信号的幅度,ω0 为载频的中心角频率。
△ω为移频信号的角频偏。
经傅立叶变换后得到移频信号的频域表达式为 :
其中: n 为整数,ω1 为低频调制角频率,m 为移频指数: m = △ω/ω1 =△ f/f1。
进一步可得到: 中心载频分量ω0 (ω0= 2!f0,n= 0)的相对幅度为:
奇次边频分量的相对幅度为:
偶次边频分量的相对幅度为:
国产18信息及UM - 71 轨道电路的理论频谱图的大致图形如图2所示。
相关文章
- 2024-10-31基于网络的计量管理模式研究
- 2024-08-23一种新型旋转滚筒表面温度测试仪
- 2022-07-08安邦信变频器在建筑大厦集中供热中的应用
- 2023-11-02显微成像测量精密狭缝的重复精度
- 2023-01-10基于SI473X的RDS功能设计与实现
请自觉遵守互联网相关的政策法规,严禁发布色情、暴力、反动的言论。