基于CPLD和89S51的多功能信号测量仪
1 引言
测频是最基本的电子测量技术。常用的测频方法有较大的局限性,其测量精度是随被测信号频率的下降而降低的,并且被测信号计数则产生±1个数字误差。而采用等精度频率测量方法测量精确,测量精度保持恒定;并且与CPLD(复杂可编程逻辑器件)相结合可使测频范围达到0.1 Hz~100 MHz,测频全域相对误差恒为1/1000。
智能化仪器通常以单片机为核心,而一般单片机自身计数器/定时器的计数/定时范围或精度有时无法满足系统要求。以89C51单片机为例,当其内部两个16位计数器/定时器T0和T1工作在计数方式时,对T0(P3.4)或T1(P3.5)的外部脉冲进行计数。当T0或T1引脚上发生负跳变时,计数器加1。由于识别引脚的负跳变需2个机器周期,即24个时钟振荡周期。T0/T1的最高频率为1/24fosc,当晶体振荡器频率为12MHz时,其最高计数频率为500 kHz。要求高测量频率时,则需对被测信号预处理以扩展测频范围。
2 测量原理
要求测量频率较高时,则需对高频和低频采用不同的测量方法,提高测量精度。
2.1高频测量
采用测频法测量高频。在确定的阈值时间Tw内,记录被测信号的变化周期数(或脉冲数)Nx,则被测信号的频率:fx=Nx/Tw。测频法原理如图1。由于被测频率较高,单片机难以测量,8051所测量最高频率为500 kHz,因此采用CPLD和8051的内部计数器组成32位计数器。CPLD的计数器为低16位,其进位脉冲再向8051计数。CPLD延时为10 ns,因此,CPLD与8051按测频原理可以精确测量50 Mz的频率。
2.2低频测量
采用测周法测量低频。测周期法需用标准信号的频率fs,待测信号的一个周期Tx内,记录标准频率的周期数为Ns,则被测信号的频率为:fx=fs/Ns,其原理如图2所示。由于被测频率较低,故可采用8051测量。首先要将被测信号转换成门控信号,其转换电路原理如图3所示。
2.3脉宽测量
由于被测频率较低,故可采用8051实现。将脉宽信号直接送人8051计数器,采用测周法来测量脉宽,标准信号频率fs记录标准频率的周期数为Ns,则被测信号的脉宽为:Tx=Ns/fs。
3系统硬件电路设计
3.1单片机设计部分
快速测量的要求必须保证高精度测频,必须采用高精度的标准频率信号。由于单片机受本身时钟频率和指令运算限制,因此,测频速度较慢,无法满足高速、高精度测频要求。采用高集成度、高速可编程门阵列CPLD可实现快速、高精度测频。其硬件电路如图4所示。
3.2 CPLD设计部分
相关文章
- 2022-12-02网络化分布式虚拟仪器测试研究
- 2022-07-15SY一1型体外冲击波碎石机
- 2021-12-08基于WinCE的ARM视频监控系统解析
- 2021-12-28明电变频器在纺织行业粗纱机电气控制系统应用分析
- 2023-04-24薄壁圆筒式动态多维切削测力仪的有限元分析
请自觉遵守互联网相关的政策法规,严禁发布色情、暴力、反动的言论。