碧波液压网 欢迎你,游客。 登录 注册

基于CMOS图像传感器的纳型卫星遥感系统设计

版权信息:站内文章仅供学习与参考,如触及到您的版权信息,请与本站联系。

  纳型卫星是指质量在1~10kg 之间的卫星。与微型卫星相比, 纳型卫星对遥感系统在质量、体积、功耗等方面的要求更加苛刻。目前广泛用于微型卫星遥感系统的电荷耦合器件CCD很难满足纳型卫星的使用要求。CMOS图像传感器采用标准的CMOS 技术, 继承了CMOS 技术的优点, 如静态功耗低、动态功耗与工作频率成比例、噪声容限大、抗干扰能力强、特别适合于噪声环境恶劣条件下工作、工作速度较快、只需要单一工作电源等。虽然 CMOS 器件的研究还未完全成熟, 如电离环境下暗电流稍大等问题还没有很好地解决,还不能完全取代CCD, 但不可否认CMOS 器件将是未来遥感传感器的发展方向。本文设计了一套纳型卫星CMOS 遥感系统, 并对其进行了热循环实验研究。

  1 纳型卫星遥感系统的设计

  1. 1 遥感系统总体设计

  纳星遥感系统如图1 所示, 包括镜头、CMOS图像传感器、现场可编程门阵列FPGA、静态随机存储器SRAM 和微控制器5 部分。

  

图1 纳星遥感系统框图

  1. 2 光学系统设计

  1) 焦距设计

  遥感相机光学系统的原理如图2 所示。图中用一个透镜代表实际光学系统的透镜组, 示意了视场中地面景物的最小可分辨单元在成像面上产生一个相应的点。对于卫星遥感相机的光学系统, 因为成像物距等于卫星轨道高度h, 相对于焦距f 来说可认为是无穷远, 所以可认为光线都是近轴的平行光。这些近轴平行光通过光学系统的透镜组后, 汇聚在透镜组的焦平面上。因此, 从透镜组中心到焦点的距离, 焦距将大体上决定聚光系统的长度, 而光学系统的理论分辨率则主要由光学孔径D决定。

  

图2 光学系统原理图

  在实际设计中, 焦距通常是根据地面分辨率和图像传感器的大小通过下式来确定的:

  式中: h为卫星到地面的距离, rd为CMOS图像传感器探测面半径, R为相机成像覆盖半径。

  2) 光学孔径设计

  为保证成像器件探测面获得足够的曝光量, 根据遥感光学系统的经验计算相机光学系统的光圈数:

  实际设计中, 一般取F≤4~5。

  遥感相机光学系统可近似为望远镜系统, 其最小分辨角, 即望远镜分辨率, 可用刚好能分辨开的两物点对系统的张角θr 表示, 根据望远镜分辨率和Rayleigh 衍射判据有如下计算式:

  式中λ为中心波长。光学系统在平坦地面上的理论分辨率为

  式中θt为地物中心对光学系统的张角。

  设计中应综合考虑式(2) 和(4) 的结果, 选定的设计参数在保证遥感系统获得足够光照的情况下,要同时满足设计分辨率的要求。

你没有登陆,无法阅读全文内容

您需要 登录 才可以查看,没有帐号? 立即注册

标签: 传感器
点赞   收藏

相关文章

发表评论

请自觉遵守互联网相关的政策法规,严禁发布色情、暴力、反动的言论。

用户名: 验证码:

最新评论