一种基于DDS的寄生电感测量仪设计
0 引言
实际的电容元件存在着分布参数,其中对电容本身特性影响最大的是寄生电感,这些寄生电感与电容本身构成谐振回路,使电容在使用时有了一定的局限性,因此,能够测量出电容本身寄生电感的大小,可以在使用时更合理的选择电容元件。由于寄生电感的电感量很小,多为nH 级别,导致绝大部分LCR 电桥无法测量电容本身的寄生电感。为了准确的测量寄生电感,文中描述了一种利用自谐振原理的测量方法,结合DDS 扫频技术可以快速完成寄生电感的测量,其测量方法简单精确,将能够满足大多数场合的应用。
1 测量原理
实际电容由于制造的工艺导致本身存在寄生电感和寄生电阻, 其等效电路模型如图1 所示。
图1 实际电容等效电路模型
其中C 为实际电容本身的标称电容, L 是其寄生电感, Rp是其并联等效电阻, Rs 是其串联等效电阻。寄生电阻会对经过电容的信号造成衰减, 但不会影响电容本身的频率特性。寄生电感会与电容构成串联谐振回路, 会使实际的电容在某个频率上发生谐振, 这种现象称为电容的自谐振 。实际电容的阻抗和频率特性曲线如图2 所示。
图2 实际电容频率特性曲线
图2 中的f 0 是电容与其寄生电感构成的谐振回路的谐振频率, 称之为自谐振频率, 实线部分为实际的电容频率特性曲线, 虚线为理想无寄生电感的电容特性曲线。可见, 在低于自谐振频率时, 电容呈现容性, 阻抗随频率增高而减小; 然而当频率超过自谐振频率时, 电容表现出阻抗随频率增高而上升的趋势, 这恰好是电感的特性。该曲线表明实际的电容仅能工作于自谐振频率以下, 高于自谐振频率时, 电容则表现为感性, 无法再继续作为电容使用了。可见, 准确的测得电容的自谐振频率, 求出其寄生电感, 对于电容的正确使用有着非常重要的意义。然而该电感往往非常小, 通常为nH 级别, 一般的LCR 电桥无法测量这种微小的电感。因此就需要一种不同于电桥法的测量这种微小电感的方法。
由电感和电容构成的LC 串联回路的谐振频率为:
同时谐振发生时整个LC 回路表现出的阻抗为纯阻性, 即感抗和容抗之和为零。利用这个原理, 使用一个扫频信号激励待测电容, 测量出谐振频率, 再结合式(1) 即可测出寄生电感的大小 。根据该原理, 设计1 个扫频发生器产生扫频信号激励待测电容, 然后找出谐振点, 读出谐振频率即可求出电容的寄生电感。其结构如图3 所示。
其中最核心的部分就是扫频发生器和谐振点检测电路。
相关文章
- 2023-03-29SolidWorks在立铣刀三维建模及工程图中的应用
- 2023-06-11漏磁检测的仿真和实验研究
- 2023-10-27小波包自适应阈值语音降噪新算法
- 2023-09-22皮带秤控制衡器选择法剖析
- 2022-12-09微小尺度流动应力波动尺度效应
请自觉遵守互联网相关的政策法规,严禁发布色情、暴力、反动的言论。