基于多传感器信息融合的球磨机负荷检测系统
0 引言
在磨矿过程自动控制中,影响磨矿过程作业指标的因素很多:(Ⅰ)属于物料性质方面的有:矿石可磨度、给料粒度、产品细度等;(Ⅱ)属于磨机结构方面的有:磨机规格、型式、衬板形状等;(Ⅲ)属于操作方面的有:介质形状、尺寸配比及材质、介质充填率、磨机转速率、加球制度、料球比和磨矿浓度等。而这些因素本身又相互影响。在上述因素中,第一类和第二类因素被确定以后通常就不再改变;如果设备维修以及添加钢球的材质都正常,则其可改变的条件只是磨机转速率、介质充填率、料球比和磨矿浓度,而一旦磨机转速率固定,则仅仅其余3个因素是可变的。所以,介质充填率(指球磨机静止时磨矿介质钢球体积占磨机筒体有效体积的百分比)、料球比(指被磨物料密实体积占球磨机内介质中空隙体积的比例(用小数表示))和磨矿浓度(指球磨机内物料重量占矿浆总重量(物料+水)的百分比)是球磨机负荷检测和控制中研究的三个主要参数。这三个参数间接地反映了球磨机的负荷(包括球负荷、物料负荷以及水量的各自数值),能否准确地检测出球磨机的负荷是整个球磨机优化控制成败的关键。
为解决上述问题,本文将设计一种基于多传感器信息融合的球磨机负荷检测系统,使能够准确地检测出球磨机的内部负荷参数:介质充填率、料球比和磨矿浓度。最终根据需要来调整介质加入量、给矿量及给水量,从而实现球磨机优化实时控制的目的。
1 系统总体设计
所谓多传感器信息融合就是充分利用多个传感器资源,通过对这些传感器及其观测信息的合理支配和使用,把多个传感器在空间或时间上的冗余或互补信息依据某种准则进行组合,以获得被测对象的一致性解释或描述,使该信息系统由此获得比它的各组成部分的子集所构成的系统更优越的性能。根据处理对象层次的不同,可分为:数据(像素)级融合、特征级融合和决策级融合。
本文采用三因素(声响、振动和有功功率)检测方法,分别通过声音传感器、振动加速度传感器和有功功率传感器进行球磨机外部响应信号的数据采集,经信号处理后提取这三个参数。为了保持尽可能多的现场数据,可将全部传感器的观测数据融合,且这三个传感器是同质的(传感器观测的是同一物理现象),所以可以在数据层进行信息融合,以便获取充分多的球磨机外部响应信息。最后通过融合算法间接地识别球磨机内部负荷参数(介质充填率、料球比和磨矿浓度)。
2 设计步骤
(1)球磨机三个外部响应信号的数据采集
球磨机声响信号的采集电路由传声器、前置放大器及信号放大电路、抗混叠滤波器、A/D转换器、微处理器处理部分等组成。声响信号采集电路如图1所示:
相关文章
- 2023-01-19低功耗智能传感器系统的设计
- 2022-07-07Altivar38变频器在水处理系统中的应用
- 2024-02-01具有露霜判别能力的精密露点仪研制
- 2024-07-09基于GP-IB总线的加速度计测试系统研究
- 2023-07-21可编程控制器在焙烧炉燃烧站中的应用
请自觉遵守互联网相关的政策法规,严禁发布色情、暴力、反动的言论。