模拟量式电感传感器在螺纹孔径识别中的应用
现代工业中螺丝作为最主要的紧固件之一, 需求量很大, 对于不同的孔径, 螺钉与螺帽的匹配问题尤为关键, 精密设备中微小差异都可能带来传动、电动装置的系统问题, 因此钻削和攻丝技术的发展已被迅速地提上议事日程。
最早的螺纹孔检测是通过人工完成的, 即操作者将螺栓或量计旋入孔内进行检测。然而, 人工方法因劳动强度大, 成本高等问题逐渐被自动化检测法所代替。在此研究的一款即是利用先进传感器而实现的对金属螺孔的细微检测。
1 电感式传感器的基本概念
1. 1 基本结构及灵敏度
电感式传感器的激励元件由线圈和铁氧体磁心组成( 见图1) 。式( 1) 为电感式传感器的数学模型。
式中: L 为电感量; N 为线圈的匝数; L 为气隙导磁率;S 为气隙截面积; D为气隙厚度。
由式( 1) 可知, 线圈电感量L 与气隙厚度D成反比,与气隙截面积S 成正比。假设起始位置的气隙为D0 , 对应的初始电感为L0 , 且S 固定不变, 当D有细微变化为$D时, 引起自感量的变化量dL 为( 忽略高次项) 。
1. 2 工作原理
电感式传感器是建立在电磁场理论基础上的, 是利用被测量磁路磁阻变化引起传感器线圈自感或互感系数的变化, 从而导致线圈电感量变化来实现非电量测量。
当交流电流过线圈时, 线圈产生交变磁场, 该磁场通过铁心并指向铁心一侧, 即传感器的激励端。当有金属物体或磁性物体接近传感器激励端时会造成磁场变形。使用计算机模拟可获得磁场状态图( 见图2) 。从图2 可以看出, 导电材料( 如钢板) 接近激励端时的磁场效应, 变化的磁场导致传感器线圈的阻抗发生变化。集成在传感器中的电路测出线圈阻抗的变化, 并转换为开关信号输出, 图3 示出其检测流程图。
2 系统框图设计
根据电感式传感器的基本概念, 结合本文研究的内容及要求, 设计了基于电感式传感器的自动检测系统框图, 如图4 所示。
3 硬件电路设计
当材料试件接触传感器时, 超声波距离传感器测量装置将显示一个参考值。通过改变试件与电感传感器激励端间的距离, 测定其输出电流的大小, 用以确定该传感器的可检测范围区域。模拟量式电感传感器IA在确定阻尼板与传感器之间距离的情况下, 输出与传感器之间距离成比例的模拟信号。
通过带超声波传感器的信号调理电路与电流表显示, 确定系统输入信号与输出信号之间的关系。由此得出模拟量输出电感式传感器的线性检测区域。图5为检测接线图( 红色相连的为电源正极性等电位点, 蓝色相连的为电源负极性等电位点)。
相关文章
- 2023-09-15超声波电沉积参数对Ni-SiC微铸件表面形貌的影响
- 2021-11-14一种用单片机控制的光谱数据采集系统的设计
- 2022-01-05基于NiosⅡ的可重构DSP系统设计方案
- 2021-11-20基于可编程逻辑的便携式设备多节锂聚合物电池管理
- 2022-07-05爬波检测及其应用
请自觉遵守互联网相关的政策法规,严禁发布色情、暴力、反动的言论。