数字温度计校准不确定度分析
随着测温技术的不断发展,数字温度计以其使用方便、读数直观、准确度较高等优点,广泛应用于科学技术、石油化工、乳制品、制药、建筑等行业。为此,笔者根据工作经验,依据JJF1059-1999《测量不确定度评定与表示》,分析了其校准不确定度,并以温度为3000C ,分辨力为0.1℃的数字温度计为例进行不确定度的分析与计算。
1.数学模型、方差及传播系数
校准数字温度计方法是将标准器一等标准水银温度计与被校数字温度计的感温探头放置在恒温槽内,采用比较法进行。1.1数学模型
式中δ:被校数字温度计示值修正值(℃)
t标:由标准器确定的实际槽温与名义点温度的偏差(℃)
t被:被校点温度示值与名义温度的偏差(℃)
1.2方差
变量以不确定度范围代入后得方差计算公式:
1.3传播系数
对(1)式各自变量求偏导,可得传播系数:ci=1 , c2 1
2.标准不确定度分量的分析与计算
2.1标准器的不确定度分量ut标:
一等标准水银温度计在300℃时的扩展不确定度为30mK(p=0.99),正态分布,故由此引入的标准不确定度分量为
2.2被校不确定度分量uuy}由以下分量组成
2.2.1重复性引入的分量
分辨力为0.1℃的数字温度计在300℃点进行10次测量,用贝塞尔公式计算单次实验标准差,以此来考核装置的分散性:v2,=10-1=9,t分布,A类
2.2.2恒温糟温场不均匀性引入的分量
由于标准器与被校数字温度计插入孔位及深度不同,故恒温糟温场不均匀带来的误差,对油槽而言2.2.3时间常数与标准器不一致所引入的分量
校准时,恒温槽的温度会有微小变化,而标准器与被校的时间常数又不同,这样会有一滞后误差,由经验可知,在校准数字温度计读数前后温度波动不会超过0.05 °C,而校准过程中标准、被校各测10次取平均值,则每次读数会有0.05/10=0.005℃的变化,按半区间计算,均匀分布,估计可靠程度估计可靠程度估计可靠程度为20%,即v23=12, B类。
2.2.4量化误差引入的分量
对于数字温度计在显示时会有一量化误差,其单向量值为其分辨力的一半,对于分辨力为0.1℃的数字温度计,其量化误差为士0.05 0C,按半区间计算,均匀分
相关文章
- 2023-01-18基于全站仪测距的超声波液位计检校方法的提出和研究
- 2023-04-27平展流冷态湍流场的PIV测量
- 2024-04-07基于信息融合技术的呼气丙酮分析
- 2022-06-06基于单片机和TEA5767HN的FM收音机系统的设计
- 2023-12-26VPN在PDM中的应用
请自觉遵守互联网相关的政策法规,严禁发布色情、暴力、反动的言论。