软件无线电平台可重配置接口的实现
引言
随着2.5 G和3 G的出现,使多种通信体制并存发展,它们在工作频段、波形结构、调制方式、编码方式、加密方式等方面的不同,既限制了系统之间操作的互通性,也影响了用户使用的便捷性。由于软件无线电SDR(Software Defined Radio)技术可以将模块化、标准化和通用化的硬件单元和软件模块集成在一个通用的物理平台上,通过软硬件的可重构,实现多种无线通信功能,故以软件无线电为基础、面向多种通信体制的兼容信号处理技术成为研究热点。
本文研制了一个能实现多种无线通信体制的软件无线电平台。该平台如图1所示,由上位机、FPGA处理板、射频板和天线组成。其中,上位机提供用户界面,并完成基带信号处理和系统控制。FPGA处理板主要完成各种通信体制的信号预处理。
考虑到平台对多体制速率的兼容性、用户远程配置处理平台的便捷性以及平台与现有网络的融合和向分布式处理方向的可升级性和易扩展性等,该平台选用以太网接口作为上位机与FPGA处理板之间的连接方式。该以太网接口需要支持实时的在线重配置功能。
由于平台选用的FPGA器件是Alteral公司的CycllONeII2C70F672C8,芯片本身没有动态部分可重构的功能,不能利用中介绍的Xilinx的VirtexFPGA的动态部分重构功能,只需要重新配置FPGA的部分区域,而FPGA其余部分正常工作。Off-Chip动态重构的重构时间太长。模块的可重选择[5]的重构时间短,但耗费FPGA资源较多。为了满足平台的以太网接口对于一种配置时间较短而且耗用资源较少的配置方式的需要,本文提出并实现了一种上位机和FPGA处理板之间信令驱动的、参数可重加载的、可实时在线重配置的以太网接口,并详细介绍了该接口的数据/信令包的格式设计和FPGA中的逻辑设计。
1 可配置接口设计
1.1 接口电路原理描述
上位机和FPGA之间的接口电路如图2所示,主要由网络交换芯片BCM5325E和接口转换芯片RTL8201组成。其中,BCM5325E为网络交换芯片[6],工作频率为25 MHz。芯片集成了10/100 Mb/s切换控制器和6个端口,除了一个MII(Media Independent Interface)端口以外,另外5个端口(port0-port4)为全双工的10/100 Mb/s快速以太网收发器(满足IEEE802.3 u标准接口),完成以太网物理接口功能。RTL8201是一个快速以太网物理层收发器,工作频率为25 MHz,可以将IEEE802.3 u标准接口转化为MII接口。
发送过程中,上位机先将用户原始数据/信令按照一定的格式封装成网络包,通过网口发送到交换芯片的端口(port0或者port1),网络交换芯片将该网络包转发到相应端口(port3或者port4),然后经过相应的8201进行数据格式的转换,最后到达相应的FPGA,FPGA再对接收到的网络包进行解析处理,以恢复上位机发送的用户原始数据/信令。接收过程相反,FPGA发送的数据包依次经过8201、网络交换芯片后到达上位机。
相关文章
- 2024-11-05Z箍缩实验装置高压低抖动Marx发生器
- 2024-09-19双制冷温度双工质吸收制冷系统Ⅱ的模拟
- 2023-08-16基于PIC16F877的红外测距系统
- 2022-11-15智能型红外遥控器的设计应用
- 2024-02-27超声检测中双孔法调节扫描速度的应用
请自觉遵守互联网相关的政策法规,严禁发布色情、暴力、反动的言论。