电力系统故障诊断的研究现状与发展趋势
引言
电力系统故障诊断是通过利用有关电力系统及其保护装置的广泛知识和继电保护等信息来识别故障的元件位置(区域)、类型和误动作的装置,其中故障元件的识别是关键问题。电力系统故障诊断研究具有重要的现实意义。随着电力系统规模的不断扩大和结构的日益复杂,大量的报警信息在短时间内涌人调度中心,远远超过运行人员的处理能力,易使调度员误判、漏判,为了适应各种简单和复杂事故情况下故障的快速、准确识别,需要电力系统故障诊断系统进行决策参考。同时,由于电力系统调度自动化水平不断提高,越来越丰富的报警信息通过各变电所的远程终端装置(RTU),传送到各级电网调度中心,使得利用采集的实时信息进行电力系统故障诊断成为可能。另外,对于电力系统故障的仿真分析和模拟培训,也可以通过电力系统故障诊断系统来提升调度员的经验和水平。目前,国内外提出了许多电力系统故障诊断的技术和方法,主要有专家系统、人工神经网络、优化技术、Petri网络、模糊集理论、粗糙集理论、多代理技术。
本文首先综述了电力系统故障诊断的各种研究方法,评述了这些方法中需要改进之处,并进一步指出了该领域所需解决的关键技术问题和主要发展趋势。它们对构建电力系统故障诊断智能辅助决策系统具有重要的指导意义,对保证电力系统的安全运行、减少事故的经济损失具有重要的理论和现实意义。
一、国内外研究发展状况
1.1 基于专家系统的诊断方法
专家系统(expert system)利用专家推理方法的计算机模型来解决问题,己获得日益广泛的应用。目前,专家系统用于电力系统故障诊断是比较成功的。根据故障诊断的知识表示和所用推理策略的不同,专家系统主要有2类:
1)基于启发式规则推理的系统。
此类系统把保护、断路器的动作逻辑以及运行人员的诊断经验用规则表示出来,形成故障诊断专家系统的知识库,采用数据驱动的正向推理将所获得的征兆与知识库中的规则进行匹配,进而获得故障诊断的结论。现在大多数故障诊断属于这一类。
2)结合正、反推理的系统。此类系统结合了正反向混合推理方法,根据断路器和继电保护与被保护设备之间的逻辑关系建立推理规则,同时通过反向推理,有效地缩小可能故障的范围,以动作的继电保护与故障假设的符合程度计算可信度。文献[4]介绍了基于事例推理(CBR)和基于规则推理(RBR)的混合推理的故障诊断专家系统。由于采用了混合推理,提高了故障诊断专家系统的适应性与自学习能力。
相关文章
- 2024-10-18Hamilton体系下旋转刚柔耦合楔形梁有限元建模及辛算法
- 2024-08-13基于小波的声发射信号特征分析
- 2024-01-12气体大流量标准装置的扩展不确定度评定
- 2024-06-24圆柱销在线激光扫描检测仪
- 2024-02-07基于最小二乘支持向量机的N型热电偶非线性校正及应用
请自觉遵守互联网相关的政策法规,严禁发布色情、暴力、反动的言论。