基于CPSO算法的风力机变桨距自抗扰控制
为解决风力机控制系统在不同风况下稳定性差的问题,设计了一种变桨距自抗扰控制器,估计和补偿了系统未知环节和外界扰动,实现输出功率在不同风速下稳定输出。针对自抗扰控制器参数多且难以整合的特点,融入混沌粒子群优化(CPSO)算法优化控制器的参数,减少了参数整定的数目,提高了系统控制精度和效率。对额定功率为300 kW的风电机组在不同风速作用下进行仿真,结果表明,该方法可以快速调节风速变化引起的输出波动,能够使控制系统输出平稳且超调量小,具有较好的稳定性和鲁棒性。
基于改进增量卡尔曼滤波算法的UWB室内定位研究
为解决室内环境下的非视距(NLOS)、多径传播以及欠观测条件下的量测系统误差给测距定位带来较大误差的问题,提出了改进增量卡尔曼滤波以消除定位误差的算法。该算法运用增量卡尔曼滤波对由超宽带(UWB)室内定位系统得到的距离值进行去噪,避免了受环境、测量设备等因素影响或者难以自校准由量测方程带来的系统误差而导致较大的卡尔曼滤波误差问题;然后运用经典Chan定位算法对目标标签实现定位获得定位结果。实验和仿真表明,与传统的小波去噪和卡尔曼滤波相比,该定位算法数据稳定性好,误差减小,显著提高了定位精度。
球形机器人系统建模与仿真
针对目前球形机器人的完整动力学模型不能应用现有的非线性控制方法的问题,通过合理的抽象和简化,采用拉格朗日法选取适当的广义坐标,推导出一种完整的三维动力学模型,并将其转化为二阶非线性微分方程,相较其他的动力学模型降低了复杂度,为基于动力学模型的控制策略研究提供基础。同时针对该模型采用一种并联PID控制方法,在Simulink仿真实验中证明在此动力学模型基础上该控制策略能实现机器人的平衡控制与运动控制,并具有较好的响应特性和稳定性。
球形机器人非线性PID控制器研究与设计
针对一种非完整约束的典型欠驱动系统对象球形机器人,计算系统二阶非线性微分方程形式的动力学模型并验证其正确性,为非线性控制器的设计与研究提供基础。设计一种并联非线性PID控制方法,该方法将球形机器人系统看做两个单输入系统的组合,并针对每个单输入系统设计并联非线性PID控制器。在Simulink仿真实验中,证明了该控制策略能够实现机器人在平衡点附近的平衡控制与运动控制,同时在存在外界干扰情况下该控制器仍具有较好的响应特性和稳定性。
断路器弹簧操动机构参数化建模与优化
基于断路器弹簧操动机构的运动原理,利用三维软件Solid Works和多体动力学仿真软件ADAMS建立了操动机构的虚拟样机模型。通过现场试验测试了断路器弹簧操动机构的机械特性,试验结果表明,模型仿真的输出特性跟试验结果具有良好的吻合趋势,验证了模型的正确性。基于虚拟样机模型的基础上,建立了操动机构的参数化模型,并以动触头的分闸速度为指标,对两个拐臂以及绝缘拉杆进行优化。参数化仿真及实验结果表明,优化后的分闸速度达到了断路器分闸的操作要求。
水环真空泵临界转速的计算和有限元分析
针对于水环真空泵转轴系统的临界转速问题,在综合传统算法的基础上,提出了一种新的有效的计算方法。该计算途径首先将阶梯轴通过当量直径来等效转换为等径轴,计算出其临界转速。同时将叶轮等效为均布载荷,利用叠加原理计算挠度,可计算出只有叶轮载荷下(不计轴重)的临界转速。最后运用邓克尔莱方程可计算出转轴系统的临界转速。同时运用ANSYS Workbench软件对转动机构进行模态分析,分析结果显示计算结果正确。该计算方法能很好地求解工程中阶梯轴转子系统的临界转速,特别是对于叶轮转子轴向长度较长而不宜采用集中载荷的实际情况。
轮对标定试验台先进PID压力控制的研究和应用
测力轮对标定试验台主要功能在于垂、横和纵三个方向液压加载力的实现,由于液压系统的非线性、其它方向力和机械结构带来的扰动性,严重影响液压加载过程。在常规PID控制算法的基础之上,综合了积分分离PID控制算法和不完全微分PID控制算法这两种改进PID控制算法,并将改进后的控制算法应用在测力轮对标定试验台的液压加载系统中。试验结果表明,该控制算法能够改善系统的动态性能和稳态精度,同时对于减少超调量、加快响应速度都有很好的促进作用。
模糊滑模控制在轮对试验台中的应用
针对液压伺服系统参数不确定性及外部干扰大等特点,提出一种模糊滑模变结构控制方法。以本轮对实验台液压伺服系统为例建立数学模型,使用趋近律设计方法改善系统趋近运动时的动态品质。将模糊控制理论与滑模变结构控制理论相结合,设计基于等效控制和准滑动模态的模糊滑模变结构控制器削弱系统的抖振。理论分析和仿真结果表明:与常规PID等经典控制及传统滑模变机构控制相比,模糊滑模变结构控制器跟踪精度高、响应速度快、鲁棒性强、抖振小,能够达到满意的控制效果。
隧道挖掘装载机液压系统关键技术研究
应国内某公司的要求针对我国隧道施工的特点研究了ITC312隧道挖掘装载机国产化的关键技术。通过对液压系统进行深入研究选配关键液压元件匹配系统参数确保国产化系统主要性能指标不低于原样机的水平。
基于LabVIEW的插装阀实验台测控系统设计
基于Lab VIEW设计插装阀实验台测控系统。为确保测控系统的稳定,结合积分分离PID的优点,提出将这种PID的改进算法用作液压系统的压力控制。使用板卡自带的Lab VIEW驱动函数,结合Lab VIEW中相应的采集函数和模块,可以非常方便地对数据进行采集分析与保存。将Access数据库用于报表生成中,结合数据库的特点使得报表的生成具有动态与实时的特点。试验结果表明:基于Lab VIEW的测控系统不仅交互界面友好,同时对于压力的控制也足够精准,系统的调试与维护等操作也很方便。












