碧波液压网 欢迎你,游客。 登录 注册

基于FPGA的线阵CCD驱动设计

版权信息:站内文章仅供学习与参考,如触及到您的版权信息,请与本站联系。

  

  

  电荷耦合器件(CCD)作为新兴的固体成像器件——图像传感器,具有体积小、重量轻、分辨力高、噪声低、自扫描、工作速度快、灵敏度高、可靠性好等优点,受到人们的高度重视,广泛应用于图像传感、景物识别、非接触无损检测、文件扫描等领域。其应用系统的关键技术在于CCD驱动信号的产生及输出信号的处理。以往经常采用的驱动方法主要偏重硬件的实现,调试困难,灵活性较差。而单片机驱动方法虽编程灵活,但存在资源浪费较多、频率较低的缺陷。复杂可编程逻辑器件FPGA具有编程灵活、集成度高、速度快、容量大、功耗小、可靠性好等优点,并且节省PCB板的空间,可移植性好,使用灵活。因此,结合实际应用需要,设计了基于复杂可编程逻辑器件FPGA的CCD驱动时序设计,使用Verilog语言对驱动电路方案进行了硬件描述,采用QpartusⅡ对所设计的时序进行了系统仿真。

  1 CCD图像传感器TCD1251UD

  TCD1251UD芯片是日本东芝公司生产的一种高灵敏度、低暗电流、具有2 700个有效像元的双沟道两相线阵CCD图像传感器。它的中心距为11μm,最佳工作频率为1 MHz,光敏单元阵列总长为29.7 mm。该传感器可用于传真、图像扫描和OCR。它的结构包括:MOS电容存储栅、转移栅电极SH、CCD模拟移位寄存器φ1和φ2信号输出单元OS和补偿输出单元DOS。

  2 TCD1251UD的驱动时序要求

  TCD1251UD的驱动脉冲波形图如图1所示,各信号之间定时关系如表1所示。

  当SH脉冲为高电平时φ1脉冲亦为高电平,其下均形成深势阱,SH的深势阱使φ1电极下的深势阱与MOS电容存储势阱沟通,从而使MOS电容存储栅中的信号电荷转移到φ1电极下的势阱中。当SH电平由高变低时,SH低电平形成的浅势阱将MOS电容存储栅下的势阱与φ1电极下的势阱隔离开。存储栅的势阱进入光积分状态,而模拟移位寄存器将在φ1和φ2脉冲的作用下驱动信号电荷向左转移,最后信号经由OS端输出哑元信号和2 700个有效像元信号,而由DOS端输出补偿信号。由于结构的安排,OS端首先输出13个虚设单元信号;再输出51个暗信号;最后连续输出2 700个有效像素单元信号;接着输出9个暗信号、2个奇偶检测信号和没有信号的空驱动,空驱动的数目为任意的,但必须大于0,否则会影响下一行信号的输出。由于该器件是两行奇、偶传输,所以在一个SH周期中至少要有1 388个φ1脉冲,即TφSH>1 388Tφ1。CCD各路脉冲的技术指标为:φ1,φ2为驱动脉冲,φ1,φ2相位相反,两者均是频率为0.5~2 MHz,占空比为1:2的方波,本文要求该频率可调节。SH为转移脉冲,由图1可以看出:当SH为高电平时必须φ1同步为高电平。当SH为低电平时,φ1也将变为低电平。但是,φ1脉冲必须比SH脉冲提前上升、迟后下降。即在并行转移时φ1脉冲有一个大于SH为高电平时的持续时间的宽的高电平脉冲。由上面分析可以得出,TφSH>1388Tφ1,RS为复位脉冲,占空比为1:4的方波,频率为1~4 MHz,同时要求该频率同样可调节。

你没有登陆,无法阅读全文内容

您需要 登录 才可以查看,没有帐号? 立即注册

标签:
点赞   收藏

相关文章

发表评论

请自觉遵守互联网相关的政策法规,严禁发布色情、暴力、反动的言论。

用户名: 验证码:

最新评论