基于机器视觉的摄像机标定方法研究
0 引言
机器视觉的基本任务之一是从摄像机获取图像信息并计算三维空间中物体的几何信息,以由此重建和识别物体。而空间物体表面某点的三维几何位置与其在图像中对应点之间的相互关系是由摄像机成像的几何模型决定的,这些几何模型参数就是摄像机参数。在大多数条件下,这些参数必须通过实验与计算才能得到,这个过程被称为摄像机定标(或称为标定)。标定过程就是确定摄像机的几何和光学参数,以及摄像机相对于世界坐标系的方位。由于标定精度的大小,直接影响着计算机视觉(机器视觉)的精度。因此,只有做好了摄像机标定工作,后续工作才能正常展开,可以说,提高标定精度也是当前科研工作的重要方面。
1 摄像机透视投影模型
摄像机通过成像透镜将三维场景投影到摄像机二维像平面上,这个投影可用成像变换(即摄像机成像模型)来描述。摄像机成像模型分为线形模型和非线性模型。针孔成像模型就属于线形摄像机模型,本文就讨论在这种模型下,某空间点与其图像投影点在各种坐标系下的变换关系。图1所示为三个不同层次的坐标系在针孔成像模型下的关系。其中(Xw,Yw,Zw)为世界坐标系,(x,y,z)为摄像机坐标系,XfQfYf为以像素为单位的图像坐标系,XOY为以毫米为单位的图像坐标系。
图像中某点在以毫米为单位的图像坐标系中的坐标与其在以像素为单位的图像坐标系中的坐标的变换关系如下:
空间某点在世界坐标系中的坐标与其在摄像机坐标系中的坐标变换关系如下:
其中,为3×3正交单位矩;t为三维平移向量;M2为4×4矩阵。
由于针孔成像模型有如下关系:
所以,将(1),(2)代入上式的齐次坐标和矩阵表示可得:
其中,M1为摄像机内参数,M2为摄像机外参数。确定某一摄像机参数称为摄像机定标。
2 标定分类
总的来说,摄像机标定可以分为传统的摄像机标定方法和摄像机自标定方法两大类。传统摄像机标定的基本方法是在一定的摄像机模型下,通过对特定标定参照物进行图像处理,并利用一系列数学变换公式计算及优化,来求取摄像机模型内部参数和外部参数。然而,该方法在场景未知和摄像机任意运动的一般情况下,其标定很难实现。20世纪90年代初,Faugeras,Luong,Maybank等人首次提出了摄像机自标定方法。这种自标定法利用摄像机本身参数之间的约束关系来标定,而与场景和摄像机的运动无关,所以更为灵活。
相关文章
- 2023-03-22SolidWorks在管路补偿接头系列化设计中的应用
- 2023-04-12全电子包装秤故障原因分析及策略
- 2023-04-04基于NX的FANUC系统四轴加工中心后置处理器构建
- 2021-12-20DSP和FPGA在大尺寸激光数控加工系统中的运用
- 2023-05-28锁相红外热成像技术在无损检测领域的应用
请自觉遵守互联网相关的政策法规,严禁发布色情、暴力、反动的言论。