干涉测长中的“最终小数法”
0引言
用干涉仪来计量长度是通过计算干涉条纹数目来实现的。在很多情况下,被测量物的长度或长度变化不是正好等于干涉条纹数目的整数倍,如某物长度变化对应的干涉条纹数目的变化量为476. 64,它包括整数与小数两部分,小数部分表示小干一级条纹当量的长度量。一级条纹当量为λ/2,那么0. 46级条纹就对应8/25λ的长度量。
干涉条纹的“小数”测量是精密干涉计量中的专门课题。小数的测量方法是先测出两相邻条纹的间距f,并记下一个标记,再测出某一条纹相对于这一标记的距离d,d/f即为干涉条纹的小数级,这种方法在精度要求不太高的情况下,简易可行。现代高精密干涉仪,多采用系论细分法来测量“小数”,相邻系纹间细分的等分越多,测得的小数位数越多.仪器的精密度越高。
1经典的“正确小数法”原理
干涉测长中,常用“正确小数法”,现以测量法布里标准具的间距为例来介绍正确小数法原理。先用测微计测量标准具的长度D,若测得D= (30. 039士0. 0025 )mm,则其双倍长度2D=(60. 078士0. 005 ) mm,再测量已知波长的四条K,光谱线所产生的法布里干涉系纹的小数,结果见表1。
K1的一系谱线的波长是4273. 970A,所以这个波长谱线所产生的条纹系统级次一定是
由表1知,实验中测得这条谱线的“小数”为0. 5 8,所以准确的干涉级次应该在(140567---12+0. 58)= 140555. 58和(140567+12+0. 58 )=140579. 58之间。对这些可能级次的每一个数值都可以通过下述公式计算出其它三条谱线(4318. 552A , 4502. 335A , 5562. 226A)的级次。
式中上标I,d分别表示干涉条纹的整数级次和小数级次。计算结果见表1,表1中相应的级次应该有24个(从140555. 58到140579. 58),现只列出一部分。
经查表发现,只有一项表示计算出来的小数和实际测得的各谱线小数符合的相当好,即对应波长4273. 970A的光谱线,准确的级次是140563. 58,因此标准具的双倍长度等于
当量程较大时,数几百条,几干条以上的条纹不仅费力而且容易引起误差,正确小数法通过理论公式(1)计算出小数md,nd.....再与各个实测谱线小数比较,找出使二者符合的最好的那个整数级次数目,从而达到以条纹的小数级次来确定整数级次的目的。
2“最终小数法”原理
现仍以法布里干涉仪介绍最终小数法原理。对于空气膜,法布里干涉仪的基本方程为
其中,θ是光线在膜中的折射角,D为膜间距,其光学示意图见参考文献。
现将互成一角度θ的两束光同时人射到法布里干涉仪上,一束正入射(θ= 0o),一束斜入射(θ);也可由互成θ角度的两个法布里一干涉仪组成上述实验,两个干涉仪上面的两块镜片通过某种方法连在一起。这样一来.两束光就分别正入射到各自的干射仪上。
相关文章
- 2023-08-16电磁流量计中的抗工频干扰问题
- 2022-07-13基于称重法的水暖流量测量系统
- 2023-07-07静态容积法流量标准装置的架构
- 2023-02-09四球机改装的接触疲劳试验机及其应用
- 2021-12-25TX315A无线收发模块在无线遥控开关中的应用
请自觉遵守互联网相关的政策法规,严禁发布色情、暴力、反动的言论。