RFID读写器接收机基带数字信号处理研究
1 引言
超高频RFID系统空中接口标准包括ISO/IEC系列,F2C系列,以及中国正在研究制定的国家标准,数字接收机可实现软件升级和多协议支持,相比模拟接收机具备易于调试、应用灵活的优势,因而在超高频姗读写器中得到了广泛应用.提高超高频RFID读写器的读取效果一直是近年来的研究重点.在经过详尽分析和实验验证后,本文给出相关问题的解决办法。
超高频RFID读写器是与标签之间采用反向散射原理完成通信,根据当前主要的UHF频段空中接口标准ISO/IEC 18000-6C,标签在无源状态下以同频半双工方式通讯.基本的通信过程是,读写器采用幅移键控(ASK)等方式来调制载波,在特定频率的信道上将信息发送给一个或多个标签.之后读写器仍然需要发射CW载波,在指定的时间内来等待标签的应答。
零中频架构具有不需要中频环节,能够减小功耗,降低电路复杂度,易于调试等优点.零中频RFID数字接收机电路框图如图1所示.天线接收进来的射频信号通过环行器后直接进入下变频器,转换完成的基带信号通过LNA放大、低通滤波,输出两路I、Q基带信号交由基带进行数字信号处理。
图1 零中频RFID数字接收机电路框图
读写器的通信效果受到发射机输出功率、接收机灵敏度、收发天线增益、收发隔离度、标签功耗、标签天线增益,以及环境状况等参数的影响.其中,发射端最大有效全向发射功率(EIRP)受到国家无线电发射设备管制,收发隔离度受到环行器等器件隔离度限制(一般只能达到25dB),在标签、天线和环境等参数一定的条件下,接收机的性能对读写器整机性能起决定性作用。
2 接收机性能影响因素分析
超高频RFID读写器接收机工作时也需要发射机发出无调制的载波.接收机接收到的包括标签反射信号、天线噪声、环境反射、发射机直接耦合,以及接收机自身的噪声等。在标签能获得足够工作能量的前提下,读写器的工作距离主要取决于标签反向散射信号在读写器的解调输出能否满足最低信噪比要求.根据文献[3],可用下面的公式来标示读写器决定的最大工作距离:
其中,C是电磁波在自由空间的传播速度,ω是电磁波信号的角频率,Г是标签功率反射系数,ξ是收发隔离系数,GR是读写器天线增益,Gt是标签天线增益,分母中的Ppn表示本振的单边带通带内相位噪声功率,可以计算本振已知的相位噪声数据或者使用频谱分析仪(SPA)直接测量获得.分子中的PDATA表示标签二进制数据序列的单边带通带内信号功率,可以数值计算的方式得到.根据公式,在标签参数、天线增益和收发隔离等参数一定的情况下,读写器的工作距离取决于接收机的信噪比性能(SNR),尤其是相位噪声以及降噪处理效果。
相关文章
- 2023-09-16作大范围平动柔性梁的耦合动力学建模及分析
- 2023-09-05基于时-空关系的时间间隔与频率测量方法研究
- 2023-03-30基于SolidWorks的锥形螺旋叶片展开图的绘制
- 2023-11-13风冷太阳能双级氨喷射制冷系统冷藏工况性能分析
- 2023-03-10电容式角位移变送器在电远传浮子流量计中的应用
请自觉遵守互联网相关的政策法规,严禁发布色情、暴力、反动的言论。