火焰探测器
在生产、加工、储存、使用和运输各种可燃物质的部门,象飞机停机库、大型油气罐区、关键的石油化工装置及自动加工工厂等部门,都需要配备性能可靠、反应灵敏的火焰探测器。众所周知:若能在火苗刚刚燃起时,火焰探检器就能立即探测到“小火”,人们便能尽快采取灭火措施,从而避免或减少损失,往往比较容易奏效。因此,无论是单纯的火焰探测系统,还是作为自动灭火系统一部分的火焰检测,都对火焰探测探头提出了相当高的要求;首先是探头要有高的灵敏度,同时要有高的可靠性,再有就是希望探头要有大的检测距离,即有大的保护范围。
一般,人们往往简单地认为,只要设计采用高灵敏度的紫外(UV)、红外(IR)传感器或紫外/红外(UV/IR)传感器,就能达到灵敏探测的目的。但是,问题并不是人们所想象的那样简单。因为一般火焰探测器(探头)都安装在生产现场,而在现场存在许多并非火焰的红外光和紫外光辐射源,而这些随机可能出现的辐射能将会干扰火焰探测探头的正常工作,以致使探测器产生误报警,甚至真的当有火焰出现时,探测器倒反而不报警了,是相当危险的。因此,人们要求火焰探测器能够根据它所探测到的信号,做出正确的分析判断,区分究竟是“火焰”还是“干扰”,做到既不漏报警,也不误报警。
一般安装火焰探测器的场合危险性比较高,同时它所保护的设备、物资等对象也比较昂贵。正因为如此,人们对火焰探测器的可靠性就相当严格,对其报警准确性的要求也相当苛刻。
另外,市场的要求也加速了对火焰探测器的理论研究和产品开发,促使其不断发展,出现了采用不同原理(如物化、物理、电/光、电磁物理、电磁频谱分析和热力学原理)的各种火焰探测器。
1 光学火焰探测器
在“火焰”的辐射能中有30%~40%是以电磁辐射的形式消耗的。这些电磁辐射包括紫外线(UV),可见光和红外线(IR)。下图是典型的碳氢化合物火焰的电磁辐射频谱图,图中带斜线的频段就是通常的火焰探测器所选择的频段。
典型的碳氢化合物火焰辐射谱图各种光学火焰探测器探头都选择火焰光的某些频带范围,而且是“火焰”所具有的比较特殊的频带。频带通常很窄,探测器根据探头接收到的确定波长(频带)的辐射信号,按照预先确定的分析方法,进行如下一种或几种的计算和分析判断。
*闪烁频率分析;
*阈值能量信号比较;
*信号间的数学相关分析;
*逻辑比较分析;
相关文章
- 2023-10-19一种改进的原子力显微镜摩擦力标定方法
- 2024-08-05炮管直线度测量中母线与轴线直线度关系研究
- 2022-08-24ASCO双电源开关在地铁项目中的应用
- 2023-01-10CD系列飞锯控制系统的应用
- 2023-05-12便携式激光生化探测仪
请自觉遵守互联网相关的政策法规,严禁发布色情、暴力、反动的言论。