碧波液压网 欢迎你,游客。 登录 注册

高速列车气动特性对桥梁防护墙的响应分析

作者: 张鹏 杜礼明 来源:大连交通大学学报 日期: 2024-11-15 人气:180
高速列车气动特性对桥梁防护墙的响应分析
建立了以CRH3系列某型高速列车为原型的空气动力学数值模型,研究了桥梁防护墙及其结构参数对高速列车气动特性的影响.结果表明:由于防护墙的存在,使得空气在防护墙处形成绕流,同时在防护墙外壁侧形成了涡旋,涡旋不断向后发展、增大,并在中间车的后转向架与尾车的前转向架处出现耗散、脱落以及新涡旋生成的现象.绕流与涡旋的作用导致整车升力平均下降了39.25%,升力减小;并且随着防护墙高度的升高,同样导致了整车升力的减小,升力平均降低了43.77%.

时速250 km动车组设备舱裙板气动载荷线路测试分析

作者: 陆意斌 王田天 张雷 姜琛 田旭东 施方成 朱宇 来源:大连交通大学学报 日期: 2022-11-08 人气:128
时速250 km动车组设备舱裙板气动载荷线路测试分析
为制定时速250 km速度等级动车组设备舱裙板气动载荷谱,通过对实际运行中的时速250 km等级动车组设备舱裙板气动载荷开展线路测试研究,并将全线所有列车通过隧道、列车明线交会工况集中起来统计分析,得出了设备舱裙板各测点内外压差的最大值、最小值和峰峰值的统计分布规律.经分析,列车隧道通过、隧道交会、明线交会时,设备舱裙板各点绝对压力的有不同特征;设备舱裙板气动载荷压差峰峰值最大不超过1500 Pa,该值可作为时速250 km速度等级列车设备舱裙板静强度载荷设计输入参考值;压差峰峰值主要集中在1000 Pa左右,该值可以作为时速250 km等级动车组设备舱裙板气动载荷疲劳设计输入参考值.

受电弓气动特性随列车时速及工作高度变化规律的数值分析

作者: 秦登 戴志远 周宁 李田 来源:大连交通大学学报 日期: 2022-11-07 人气:176
受电弓气动特性随列车时速及工作高度变化规律的数值分析
基于三维定常不可压缩N-S方程和k-ε两方程湍流模型,采用有限体积法,对1 600和2 800 mm升弓高度下受电弓不同时速的气动力进行数值模拟,得到受电弓在开口运行时的气动抬升力.计算结果表明受电弓在工作高度2 800 mm时仿真结果与风洞试验结果较为一致,误差保持在10%以内.受电弓由工作高度2800降低至1 600 mm,受电弓各部件气动升、阻力基本都随着工作高度减小而绝对值减小,降幅基本保持在20 N以内.整弓的气动抬升力随着工作高度的减小而减小,降幅基本保持在60%以内.同一高度下整弓的气动抬升力都随着速度的增加而逐渐增大,工作高度2 800 mm时速度每增加40 km/h,气动抬升力增加约30 N;工作高度1 600 mm时速度每增加40 km/h,气动抬升力增加保持在10 N以内.

突变风作用下路堑深度对高速列车气动性能影响

作者: 王伟拓 曹曙阳 操金鑫 来源:大连交通大学学报 日期: 2022-11-07 人气:170
突变风作用下路堑深度对高速列车气动性能影响
为了保证高速列车在大风环境下路堑中行驶的安全,建立了高速列车—路堑耦合的气动仿真模型,研究了不同风场环境下路堑深度对列车气动性能的影响.研究表明高速列车的气动特性随着风载荷的突变,气动特性的变化情况复杂.横风环境下,路堑深度的增加有利于降低列车气动力,而在突变风环境下,突变风作用下列车的气动力随风速变化情况更为复杂.当路堑深度为变量时,列车的气动力整体上随着路堑深度增大而降低,深路堑相较于浅路堑升力峰值减小51%,横向力减小52%,侧滚力矩减小97%,摇头力矩减小92%,6 s以后风载荷的影响出现滞后现象.同一路堑深度下,与横风作用下的结果相比,风载荷发生突变对高速列车气动特性影响大得多,列车的气动力及力矩峰值波动25%以上.

调速型液力偶合器叶轮强度有限元分析

作者: 邵万珍 兆文忠 李娅娜 单晓婉 于永鑫 来源:大连交通大学学报 日期: 2022-09-14 人气:51
调速型液力偶合器叶轮强度有限元分析
为了保证新设计的调速型液力偶合器,在大功率、高转速的运行条件下设计更合理性、更可靠,利用I-DEAS软件建立叶轮三维实体模型,应用流体力学和动力学理论对叶轮强度进行有限元分析.验证了叶轮的强度,指出了叶轮危险部位及修改措施,为新型液力偶合器的设计提供了有效的设计计算方法.

基于PLC控制技术的铁路起重机电气控制系统

作者: 谭晓东 李忠 李宝良 来源:大连交通大学学报 日期: 2022-08-11 人气:55
基于PLC控制技术的铁路起重机电气控制系统
对NS1251型伸缩臂式铁路救援起重机的运行动作进行分析,并根据其电液比例控制的要求设计了采用PLC逻辑控制器的电气控制系统,着重介绍了控制系统的硬件设计和软件设计原理和设计思路.在此基础上对所设计的电气控制系统的应用情况进行了介绍.实践证明采用这种电控技术改善和提高了NS1251铁路起重机的可靠性、可操作性、维修方便性等,综合性能大大地超越了全液压控制的铁路起重机的性能.

高速列车外风挡结构周围流场和气动载荷的仿真分析

作者: 盖杰 余以正 孙健 姜红岩 来源:大连交通大学学报 日期: 2022-04-12 人气:151
高速列车外风挡结构周围流场和气动载荷的仿真分析
以某型号高速列车为基础,针对3种不同设计形式的外风挡结构,包括有缝隙外风挡、无缝隙外风挡和底部拆除外风挡,对列车明线运行时外风挡周围流场分布和外风挡所受的气动载荷的仿真分析研究.计算结果表明:外风挡附近的压力急剧变化,随列车运行速度增加,外风挡受到气动载荷增加.对于有缝外风挡和底部拆除外风挡方案,外风挡受到拉伸拱形胶囊向胶囊外部的拉力,而对于无缝隙外风挡,外风挡受到挤压拱形胶囊向胶囊内部的压力.无缝隙外风挡与有缝隙外风挡方案相比,外风挡受到压差减小;底部拆除外风挡方案与有缝隙外风挡相比,使外风挡胶囊受到压差也明显减小.通过空气动力学线路试验证实仿真分析计算得到外风挡压差与试验结果相差不大,因此仿真分析结果可以用来指导外风挡设计.

大风区不同路堑结构中高速动车组的气动特性

作者: 宋阳阳 杜礼明 来源:大连交通大学学报 日期: 2022-04-01 人气:111
大风区不同路堑结构中高速动车组的气动特性
建立长路堑路段高速动车组运行模型,通过数值模拟得到不同工况下动车组气动力,分析强横风环境下路堑结构对动车组气动特性的影响.研究表明:不同路堑结构中气动阻力均随风速和车速增大而增大,深路堑中动车组气动阻力约为浅路堑的2~2.5倍;在3m深度的浅路堑结构中,动车组所受升力为正值,升力和横向力均随横风风速增大而增大;而在10m深度的深路堑结构中,动车组所受升力为负值,升力随横风风速增大而增大,横向力随风速增大而减小;分析车速对气动力的影响:在浅路堑结构中,除阻力外,列车车速对其他气动力影响较小;在深路堑中,动车组气动力大小均随车速增大而增大,在相同风速条件下,当风速高于15m/s时,车速每增大50km/h,横向力和倾覆力矩增大约50%.

风洞试验地面效应对列车流场结构及气动力的影响

作者: 刘涛 段大力 余以正 来源:大连交通大学学报 日期: 2022-03-25 人气:57
风洞试验地面效应对列车流场结构及气动力的影响
利用风洞试验、CFD方法,开展了风洞试验地面效应对列车流场结构及气动力影响研究.研究发现在头车部分,与静止地面边界条件相比,移动地面边界条件下列车鼻尖点以及轨道两侧的涡旋结构较少.头车流线型部分,静止地面条件下列车周围以及列车与轨道之间的涡量强度较移动地面条件下大,随着涡旋结构向后发展过程中不断衰减,在尾车流线型部分静止地面下列车周围的涡量强度小于移动地面条件.相对于静止地面边界条件,移动地面边界条件下头车阻力系数增大了1.31%,中车阻力系数增大了5.21%,尾车阻力系数增大了5.90%.相对于静止地面边界条件,移动地面边界条件下头车升力系数增大了27.85%,中车升力系数减小了13.80%,尾车升力系数减小了31.11%.

基于一种液压张紧装置的输送带寿命分析

作者: 范魁元 谭晓东 宋丕伟 李扬 来源:大连交通大学学报 日期: 2019-02-13 人气:138
基于一种液压张紧装置的输送带寿命分析
对一种液压张紧装置的输送带进行理论分析首先从有效拉力与输送带寿命的关系出发通过绘制其二者之间的函数曲线的方法分析了有效拉力对输送带寿命的影响并给出了有效拉力的合理的最大值.结合经典力学相关知识计算出合理的有效拉力最小值最终给出了施加有效拉力的合理范围.
    共4页/37条