三自由度气动柔性驱动器结构功能与形变特性研究
设计了一种采用伸长型气动人工肌肉的三自由度柔性驱动器,该驱动器的驱动装置与本体复合一体,主要由3根对称分布的人工肌肉并联组成。根据力和力矩分析,考虑了驱动器伸长量、弯曲方向和弯曲角度的综合影响,建立了驱动器伸长量、弯曲方向和弯曲角度的非线性理论模型。通过试验对理论模型进行了验证,获得了柔性驱动器在不同通气方式下的形变性能。结果表明该柔性驱动器弯曲时近似圆弧状,具有较高灵活性,能够实现轴向伸长和空间内任意方向弯曲,可作为执行部件应用于农业机器人和果蔬采摘机械手等仿生机械上。
气动双体人工肌肉结构及力学特性分析
研发了一种气动双体人工肌肉,可实现轴向伸长及两个方向的弯曲.进行了静力学实验研究,搭建了静力学实验台,对双体人工肌肉轴向伸长进行了实验.应用Matlab拟合功能对实验结果分析,得到了双体人工肌肉轴向伸长的经验模型.该经验模型表明双体人工肌肉轴向伸长量可达肌肉本体长度25%.
气动双体人工肌肉弯曲特性分析
推出了一种气动双体人工肌肉研究了气动双体人工肌肉弯曲特性.对双体人工肌肉单侧驱动时轴线伸长量和端面转角进行了实验和理论分析.根据实验数据得出了经验公式,将理论数据和实验数据进行了对比.该肌肉弯曲动作,能够适应复杂空间物体的表面,适用于仿生领域.
气动人工肌肉驱动关节特性研究
气动人工肌肉是一种具有良好柔性、出力/重量比大的新型气动执行器.该文研究了由一对气动人工肌肉组成的关节模型,分析了它的静特性,并进行了实验研究.实验结果表明气动肌肉关节具有一些独特的特性.
一种气动人工肌肉驱动的七自由度仿人手臂的设计
气动人工肌肉驱动器作为一种新型的机器人驱动器,以其简单的设计和独特的仿生性一直受到人们的关注。该文设计了一种采用气动人工肌肉作为驱动器的七自由度的仿人手臂,并且通过实验,说明仿人机械手臂能够较好的实现7个自由度的运动。
双向主动弯曲气动柔性关节力学特性分析
该文采用所开发的伸长型气动人工肌肉,研制了一种具有双向主动弯曲功能的气动柔性关节。针对该柔性关节进行了轴向变形和弯曲变形理论分析,获得了输入气体压力与关节变形之间的数学公式,并进行了关节变形实验研究,为该类柔性关节下一步动力学分析和运动精度控制打下了基础。
仿人灵巧手的结构设计与单指的控制策略
基于机电一体化设计思想和最新的驱动技术,通过分析人体解剖学,针对人类手掌的外形结构、驱动形式以及运动规则,利用仿生学原理设计了一种仿人五指灵巧手。该灵巧手有5个手指,11个自由度,在外观和功能上接近人手;除拇指外其余四指采用模块化设计从而简化了灵巧手的机械结构设计过程,增强了互换性和可靠性。该灵巧手在结构上是人手的1.5倍,手指具有位置、力/力矩以及关节角度的感知功能。通过气动人工肌肉驱动,利用C8051F040单片机对灵巧手指进行控制,采用PID控制算法实现对手指各个关节的位置反馈控制。
水压人工肌肉的压力控制与静态特性试验
水压人工肌肉与气动人工肌肉因介质压缩性差异,驱动控制过程和特性不同.为了实现对新研制的高强度水压人工肌肉的驱动控制并分析其静态特性,提出了新的水压人工肌肉压力控制回路,建立了测试试验系统.压力控制回路调压试验表明,在水液压比例节流阀10%~90%输入范围内,水压人工肌肉驱动压力可实现较大范围的线性调节;静态试验结果表明,水压人工肌肉收缩量、驱动压力和输出力满足理论关系式.所研制的水压人工肌肉能够承受4MPa的内部水压力和14kN的负载拉力,通过静态特性试验及与现有静态模型比较分析,获取了模型参数,为水压人工肌肉机械关节的驱动与控制提供了条件.
绿色液压人工肌肉的输出力特性
考虑两端变形、橡胶弹性和内部摩擦,建立了纯水液压人工肌肉精确的输出力模型,并通过仿真,研究了模型各相关参数对输出力的影响权重,分析了纯水液压人工肌肉的等压输出力特性和等容输出力特性,为开发纯水液压人工肌肉提供了理论依据。
基于虚拟仪器的气动人工肌肉运动位移测量系统的实现
给出了在虚拟仪器平台下,通过视觉跟踪与图像处理法来测量并记录气动人工肌肉元件运动过程中位移变化的实现方法,该方法可保证系统的实时性和可靠性,并可为人工肌肉的控制提供有效的数据。