一种轴扭转变形动态测量系统的设计及实现
0 引言
轴扭转变形可以反映出轴的材料特性、负载特性及安全性等许多信息。在机械工程中,轴扭转变形的测量(包括静态和动态测量)是一项基础且极为关键的技术。静态测量主要对材料的扭转力学性能进行测试[1];动态测量主要测试能够间接表征旋转动力机械设备运行状况的扭矩、功率等信息,以对设备的动力特性、运行可靠性进行监测和故障诊断[2]。
实现轴扭转变形测量需要解决传感器、能量供给和信号传输三方面的问题。目前,国内外研制的传感器从原理上讲主要分为应变型、磁弹性型、转角型等[3]。其中,应变型使用最多,它采用在旋转轴表面贴应变片的传统方法,利用适当的电路取得信号,然后进行分析处理[4]。此种传感器因成本低、操作简便而被广泛使用在静态和低速旋转系统的扭转变形测量上,测量精度可达0.1%满量程,量程范围广,可满足多数应用需求,但该类扭矩传感器应用时需要妥善解决旋转条件下的可靠供电和信号传输问题。磁弹性型和转角型传感器因对制作、安装工艺要求高,目前在工业现场还很少获得应用。
在实际测量,尤其是动态实时测量过程中,一些特殊的条件,如工作环境恶劣(高温、高湿度、剧烈振动),安装空间有限,引线难度大,高转速等实际条件下,测量系统对传感器的性能会有更苛刻的要求[5]。光学测角法因具有非接触、高准确度和高灵敏度的特点而倍受人们的重视[6-7]。因此,笔者基于相位差测量原理提出并实现了一种扭转变形动态测量系统,可以解决恶劣条件下高速转轴的扭转变形的动态实时测量问题。
1 测量系统的工作原理与结构设计
长度为L的弹性轴在受到大小为N的扭矩作用时,轴将产生变形,任意两个横截面绕中心轴发生相对转动,从而产生一个扭转角θ:
由式(1)可知,根据扭转角θ可以计算出扭矩N的值,但在实际应用中,由于扭转角非常小难于直接测量,一般都是通过一定的转换装置将其转化为脉冲信号的相位差来进行测量。目前常用的扭转式测量系统通过在轴上安装两个规格完全相同的齿轮和磁电式传感器实现[8-9]。扭矩作用时,两个与齿轮相对应的磁电式传感器将输出两路脉冲信号,通过测量这两路脉冲信号的相位差来实现扭转角的测量。这种系统结构复杂,体积与重量大,要求被测轴段有缩紧状结构,安装不便。笔者在测量轴上加工出色标带,利用反射式激光测头来得到包含转速与扭转角信息的脉冲信号,其结构原理如图1所示。
在被测旋转轴上相隔一定间距的位置处平行粘贴、喷涂或加工反光与不反光的材料或结构,形成交替分布的反光与不反光的色标带,如图1所示。在与被测轴通过轴承相固连的套筒上A、B位置处安装2个反射式激光测头。当轴旋转且承受一定的扭矩载荷时,A、B处两个色标传感器(包括激光测头和色标带)的输出为频率相同但相位差一定的两路脉冲信号,脉冲信号的周期T反映了轴的转速。在转速一定的情况下,色标条的数目决定了测量的动态特性。设色标条的数目为m,则脉冲信号的周期T和转速n(r/min)的关系为
相关文章
- 2024-03-02基于WindowsCE的嵌入式网络收音机
- 2023-07-29基于微分法的新相位测量轮廓术
- 2022-04-13一种新型白光LED模组驱动电路的设计
- 2023-09-04某船低温库蒸发器融霜方案改进设计与应用
- 2022-10-06基于PLC和组态王的油库无人监控系统
请自觉遵守互联网相关的政策法规,严禁发布色情、暴力、反动的言论。