碧波液压网 欢迎你,游客。 登录 注册

旋转对称非球面自动加工控制算法研究

版权信息:站内文章仅供学习与参考,如触及到您的版权信息,请与本站联系。

  

  1 引 言

  近年来,激光核聚变、宇宙探测和军事侦察等诸多领域的技术发展,对大型精密非球面光学部件的的质量、数量和种类提出了更高的要求。对于高陡度非球面加工,目前美、俄等国普遍采用计算机控制光学表面成型CCOS(Computer Controlled OpticalSurfacing)技术,而对于此技术的研究在我国还处于起步阶段。我们对此进行研究,设计完成了具有5个自由度,能加工高陡度光学非球面的计算机控制系统。

  CCOS是利用计算机控制一个比被加工零件小得多的磨头(磨盘或抛光盘)。以一定的路径、速度和压力对光学表面作相对运动,通过改变任一区域的抛光时间(驻留时间)、压力或磨头的转动速度,可精确地得到所要求的材料去除量,完成光学表面成型或抛光。其中通过一定的数学模型得到磨头的去除函数,由此再根据加工面的面形误差,规划出磨头的运动轨迹和相应的驻留时间是该技术的关键。

  2 磨头的去除函数模型

  根据Preston方程,任意点的材料去除量和磨头对该点垂直作用的压力和相对工件的运动速度有如下关系

  其中k为比例系数;它和加工材料、磨头材料、抛光液浓度及温度等工艺因素有关。

  在保持磨头运动速度V(x,y)不随时间变化,并使压力P(x,y)处处保持恒定,且垂直作用于被加工物件的表面时,定义磨头磨削特性函数(去除函数)为

  由于具有中心最大去处量的磨盘能使面形很快收敛,并具有很高的面形加工精度[1]因此往往采用能使磨盘作行星运动的双旋转磨头(即磨盘在围绕Z轴运动的同时还在自转运动),其去除函数具有中心最大去除量的高斯形状。对于双旋转磨头我们可以得出去除函数的公式如下[2]:

  在偏心距g大于磨盘半径R时,当rg+R时

  式中h(ρ)为磨盘自转时在单位时间内的去除率。设自转角速度为ω1

  h(ρ)等于磨盘的几何图样随半径ρ变化的弧长。

  根据上述模型我们研究了形状为单个圆形、方形、三角形、两个圆、多个圆组成的磨盘,研究结果表明。对于图1形状的磨盘,它有较好的收敛效果。

  3 模板函数的提出及在轨迹规划中的应用

  3·1 一般轨迹规划算法

  已知磨头去除函数,工件表面的去除量可以根据磨头的驻留时间函数T与去除函数Φ两者之间的二维卷积得出.

  上述方程为二维积分式,常采用将空间离散化,即让磨头只在特定的点上驻留,不妨设在点{ui,vi}0

  对上述方程进行规划,我们可以得到每一个T(ui,vi)的值,一般预先选定{ui,vi},例如可取同心圆的轨迹,然后在每一圆周上间隔等弧度长取点,得到一组特定的{ui,vi},然后再规划出T(ui,vi)的值。

你没有登陆,无法阅读全文内容

您需要 登录 才可以查看,没有帐号? 立即注册

标签:
点赞   收藏

相关文章

发表评论

请自觉遵守互联网相关的政策法规,严禁发布色情、暴力、反动的言论。

用户名: 验证码:

最新评论